Skip to yearly menu bar Skip to main content


Poster

Deconstructing What Makes a Good Optimizer for Autoregressive Language Models

Rosie Zhao · Depen Morwani · David Brandfonbrener · Nikhil Vyas · Sham Kakade

Hall 3 + Hall 2B #286
[ ]
Sat 26 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Training language models becomes increasingly expensive with scale, prompting numerous attempts to improve optimization efficiency. Despite these efforts, the Adam optimizer remains the most widely used, due to a prevailing view that it is the most effective approach. We aim to compare several optimization algorithms, including SGD, Adafactor, Adam, Lion, and Sophia in the context of autoregressive language modeling across a range of model sizes, hyperparameters, and architecture variants. Our findings indicate that, except for SGD, these algorithms all perform comparably both in their optimal performance and also in terms of how they fare across a wide range of hyperparameter choices. Our results suggest to practitioners that the choice of optimizer can be guided by practical considerations like memory constraints and ease of implementation, as no single algorithm emerged as a clear winner in terms of performance or stability to hyperparameter misspecification. Given our findings, we further dissect these approaches, examining two simplified versions of Adam: a) signed momentum (Signum) which we see recovers both the performance and hyperparameter stability of Adam and b) Adalayer, a layerwise variant of Adam which we introduce to study the impact on Adam's preconditioning for different layers of the network. Examining Adalayer leads us to the conclusion that, perhaps surprisingly, adaptivity on both the last layer and LayerNorm parameters in particular are necessary for retaining performance and stability to learning rate.

Live content is unavailable. Log in and register to view live content