Poster
Attention in Large Language Models Yields Efficient Zero-Shot Re-Rankers
Shijie Chen · Bernal Jimenez Gutierrez · Yu Su
Hall 3 + Hall 2B #310
[
Abstract
]
Thu 24 Apr 7 p.m. PDT
— 9:30 p.m. PDT
Abstract:
Information retrieval (IR) systems have played a vital role in modern digital life and have cemented their continued usefulness in this new era of generative AI via retrieval-augmented generation. With strong language processing capabilities and remarkable versatility, large language models (LLMs) have become popular choices for zero-shot re-ranking in IR systems. So far, LLM-based re-ranking methods rely on strong generative capabilities, which restricts their use to either specialized or powerful proprietary models. Given these restrictions, we ask: is autoregressive generation necessary and optimal for LLMs to perform re-ranking? We hypothesize that there are abundant signals relevant to re-ranking within LLMs that might not be used to their full potential via generation. To more directly leverage such signals, we propose in-context re-ranking (ICR), a novel method that leverages the change in attention pattern caused by the search query for accurate and efficient re-ranking. We assume that more relevant documents should receive more attention weights when an LLM is processing the query tokens, and leverage such signals for re-ranking. To mitigate the intrinsic biases in LLMs, we propose a calibration method using a content-free query. Due to the absence of generation, ICR only requires two () forward passes to re-rank documents, making it substantially more efficient than generative re-ranking methods that require at least forward passes. Our novel design also enables ICR to be applied to any LLM without specialized training while guaranteeing a well-formed ranking. Extensive experiments with two popular open-weight LLMs on standard single-hop and multi-hop information retrieval benchmarks show that ICR outperforms RankGPT while cutting the latency by more than 60% in practice. Through detailed analyses, we show that ICR's performance is specially strong on tasks that require more complex re-ranking signals, such as handling contextualization and contradiction between the query and passages, as well as information integration across multiple passages. Our findings call for further exploration on novel ways of utilizing open-weight LLMs beyond text generation.
Live content is unavailable. Log in and register to view live content