Poster
DenoiseVAE: Learning Molecule-Adaptive Noise Distributions for Denoising-based 3D Molecular Pre-training
Yurou Liu · Jiahao Chen · Rui Jiao · Jiangmeng Li · Wenbing Huang · Bing Su
Hall 3 + Hall 2B #12
Denoising learning of 3D molecules learns molecular representations by imposing noises into the equilibrium conformation and predicting the added noises to recover the equilibrium conformation, which essentially captures the information of molecular force fields. Due to the specificity of Potential Energy Surfaces, the probabilities of physically reasonable noises for each atom in different molecules are different. However, existing methods apply the shared heuristic hand-crafted noise sampling strategy to all molecules, resulting in inaccurate force field learning. In this paper, we propose a novel 3D molecular pre-training method, namely DenoiseVAE, which employs a Noise Generator to acquire atom-specific noise distributions for different molecules. It utilizes the stochastic reparameterization technique to sample noisy conformations from the generated distributions, which are inputted into a Denoising Module for denoising. The Noise Generator and the Denoising Module are jointly learned in a manner conforming with the paradigm of Variational Auto Encoder. Consequently, the sampled noisy conformations can be more diverse, adaptive, and informative, and thus DenoiseVAE can learn representations that better reveal the molecular force fields. Extensive experiments show that DenoiseVAE outperforms the current state-of-the-art methods on various molecular property prediction tasks, demonstrating the effectiveness of it.
Live content is unavailable. Log in and register to view live content