Skip to yearly menu bar Skip to main content


Poster

Language-Image Models with 3D Understanding

Jang Hyun Cho · Boris Ivanovic · Yulong Cao · Edward Schmerling · Yue Wang · Xinshuo Weng · Boyi Li · Yurong You · Philipp Krähenbühl · Yan Wang · Marco Pavone

Hall 3 + Hall 2B #603
[ ]
Sat 26 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Multi-modal large language models (MLLMs) have shown incredible capabilities in a variety of 2D vision and language tasks. We extend MLLMs’ perceptual capabilities to ground and reason about images in 3-dimensional space. To that end, we first develop a large-scale pretraining dataset for 2D and 3D called LV3D by combining multiple existing 2D and 3D recognition datasets under a common task formulation: as multi-turn question-answering. Next, we introduce a new MLLM named CUBE-LLM and pre-train it on LV3D. We show that pure data scaling makes a strong 3D perception capability without 3D specific architectural design or training objective. CUBE-LLM exhibits intriguing properties similar to LLMs: (1) CUBE-LLM can apply chain-of-thought prompting to improve 3D understanding from 2D context information. (2) CUBE-LLM can follow complex and diverse instructions and adapt to versatile input and output formats. (3) CUBE-LLM can be visually prompted such as 2D box or a set of candidate 3D boxes from specialists. Our experiments on outdoor benchmarks demonstrate that CUBE-LLM significantly outperforms existing baselines by 21.3 points of AP-BEV on the Talk2Car dataset for 3D grounded reasoning and 17.7 points on the DriveLM dataset for complex reasoning about driving scenarios, respectively. CUBE-LLM also shows competitive results in general MLLM benchmarks such as refCOCO for 2D grounding with (87.0) average score, as well as visual question answering benchmarks such as VQAv2, GQA, SQA, POPE, etc. for complex reasoning.

Live content is unavailable. Log in and register to view live content