Skip to yearly menu bar Skip to main content


Poster

Training-free LLM-generated Text Detection by Mining Token Probability Sequences

Yihuai Xu · Yongwei Wang · YIFEI BI · Huangsen Cao · Zhouhan Lin · Yu Zhao · Fei Wu

Hall 3 + Hall 2B #532
[ ] [ Project Page ]
Fri 25 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Large language models (LLMs) have demonstrated remarkable capabilities in generating high-quality texts across diverse domains. However, the potential misuse of LLMs has raised significant concerns, underscoring the urgent need for reliable detection of LLM-generated texts. Conventional training-based detectors often struggle with generalization, particularly in cross-domain and cross-model scenarios. In contrast, training-free methods, which focus on inherent discrepancies through carefully designed statistical features, offer improved generalization and interpretability. Despite this, existing training-free detection methods typically rely on global text sequence statistics, neglecting the modeling of local discriminative features, thereby limiting their detection efficacy. In this work, we introduce a novel training-free detector, termed \textbf{Lastde}\footnote{The code and data are released at \url{https://github.com/TrustMedia-zju/Lastde_Detector}.} that synergizes local and global statistics for enhanced detection. For the first time, we introduce time series analysis to LLM-generated text detection, capturing the temporal dynamics of token probability sequences. By integrating these local statistics with global ones, our detector reveals significant disparities between human and LLM-generated texts. We also propose an efficient alternative, \textbf{Lastde++} to enable real-time detection. Extensive experiments on six datasets involving cross-domain, cross-model, and cross-lingual detection scenarios, under both white-box and black-box settings, demonstrated that our method consistently achieves state-of-the-art performance. Furthermore, our approach exhibits greater robustness against paraphrasing attacks compared to existing baseline methods.

Live content is unavailable. Log in and register to view live content