Poster
GLOMA: Global Video Text Spotting with Morphological Association
Han Wang · Yanjie Wang · Yang Li · Can Huang
Hall 3 + Hall 2B #596
Video Text Spotting (VTS) is a fundamental visual task that aims to predict the trajectories and content of texts in a video. Previous works usually conduct local associations and apply IoU-based distance and complex post-processing procedures to boost performance, ignoring the abundant temporal information and the morphological characteristics in VTS. In this paper, we propose \model{} to model the tracking problem as global associations and utilize the Gaussian Wasserstein distance to guide the morphological correlation between frames. Our main contributions can be summarized as three folds. 1). We propose a Transformer-based global tracking method \model{} for VTS and associate multiple frames simultaneously. 2). We introduce a Wasserstein distance-based method to conduct positional associations between frames. 3). We conduct extensive experiments on public datasets. On the ICDAR2015 video dataset, \model{} achieves \textbf{56.0} MOTA with \textbf{4.6} absolute improvement compared with the previous SOTA method and outperforms the previous Transformer-based method by a significant \textbf{8.3} MOTA.
Live content is unavailable. Log in and register to view live content