Poster
Group Downsampling with Equivariant Anti-aliasing
Md Ashiqur Rahman · Raymond A. Yeh
Hall 3 + Hall 2B #470
[
Abstract
]
Thu 24 Apr midnight PDT
— 2:30 a.m. PDT
Abstract:
Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups *with* anti-aliasing. This involves the following: **(a)** Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. **(b)** Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
Live content is unavailable. Log in and register to view live content