Poster
Almost Optimal Batch-Regret Tradeoff for Batch Linear Contextual Bandits
Zihan Zhang · Xiangyang Ji · Yuan Zhou
Hall 3 + Hall 2B #449
[
Abstract
]
Wed 23 Apr 7 p.m. PDT
— 9:30 p.m. PDT
Abstract:
We study the optimal batch-regret tradeoff for batch linear contextual bandits. For this problem, we design batch learning algorithms and prove that they achieve the optimal regret bounds (up to logarithmic factors) for any batch number , number of actions , time horizon , and dimension . Therefore, we establish the \emph{full-parameter-range} (almost) optimal batch-regret tradeoff for the batch linear contextual bandit problem. Along our analysis, we also prove a new matrix concentration inequality with dependence on their dynamic upper bounds, which, to the best of our knowledge, is the first of its kind in literature and maybe of independent interest.
Live content is unavailable. Log in and register to view live content