Skip to yearly menu bar Skip to main content


Poster

Adversarial Score identity Distillation: Rapidly Surpassing the Teacher in One Step

Mingyuan Zhou · Huangjie Zheng · Yi Gu · Zhendong Wang · Hai Huang

Hall 3 + Hall 2B #168
[ ] [ Project Page ]
Sat 26 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Score identity Distillation (SiD) is a data-free method that has achieved state-of-the-art performance in image generation by leveraging only a pretrained diffusion model, without requiring any training data. However, the ultimate performance of SiD is constrained by the accuracy with which the pretrained model captures the true data scores at different stages of the diffusion process. In this paper, we introduce SiDA (SiD with Adversarial Loss), which not only enhances generation quality but also improves distillation efficiency by incorporating real images and adversarial loss. SiDA utilizes the encoder from the generator's score network as a discriminator, allowing it to distinguish between real images and those generated by SiD. The adversarial loss is batch-normalized within each GPU and then combined with the original SiD loss. This integration effectively incorporates the average "fakeness" per GPU batch into the pixel-based SiD loss, enabling SiDA to distill a single-step generator. SiDA converges significantly faster than its predecessor when distilled from scratch, and swiftly improves upon the original model's performance during fine-tuning from a pre-distilled SiD generator. This one-step adversarial distillation method establishes new benchmarks in generation performance when distilling EDM diffusion models, achieving FID scores of 1.499 on CIFAR-10 unconditional, 1.396 on CIFAR-10 conditional, and 1.110 on ImageNet 64x64. When distilling EDM2 models trained on ImageNet 512x512, our SiDA method surpasses even the largest teacher model, EDM2-XXL, which achieved an FID of 1.81 using classifier-free guidance (CFG) and 63 generation steps. Specifically, SiDA achieves FID scores of 2.156 for size XS, 1.669 for S, 1.488 for M, 1.413 for L, 1.379 for XL, and 1.366 for XXL, all without CFG and in a single generation step. These results highlight substantial improvements across all model sizes. Our code and checkpoints are available at https://github.com/mingyuanzhou/SiD/tree/sida.

Live content is unavailable. Log in and register to view live content