Poster
Catastrophic Failure of LLM Unlearning via Quantization
Zhiwei Zhang · Fali Wang · Xiaomin Li · Zongyu Wu · Xianfeng Tang · Hui Liu · Qi He · Wenpeng Yin · Suhang Wang
Hall 3 + Hall 2B #609
Large language models (LLMs) have shown remarkable proficiency in generating text, benefiting from extensive training on vast textual corpora. However, LLMs may also acquire unwanted behaviors from the diverse and sensitive nature of their training data, which can include copyrighted and private content. Machine unlearning has been introduced as a viable solution to remove the influence of such problematic content without the need for costly and time-consuming retraining. This process aims to erase specific knowledge from LLMs while preserving as much model utility as possible. Despite the effectiveness of current unlearning methods, little attention has been given to whether existing unlearning methods for LLMs truly achieve forgetting or merely hide the knowledge, which current unlearning benchmarks fail to detect. This paper reveals that applying quantization to models that have undergone unlearning can restore the "forgotten" information. We conduct comprehensive experiments using various quantization techniques across multiple precision levels to thoroughly evaluate this phenomenon. We find that for unlearning methods with utility constraints, the unlearned model retains an average of 21\% of the intended forgotten knowledge in full precision, which significantly increases to 83\% after 4-bit quantization. Based on our empirical findings, we provide a theoretical explanation for the observed phenomenon and propose a quantization-robust unlearning strategy aimed at mitigating this intricate issue. Our results highlight a fundamental tension between preserving the utility of the unlearned model and preventing knowledge recovery through quantization, emphasizing the challenge of balancing these two objectives. Altogether, our study underscores a major failure in existing unlearning methods for LLMs, strongly advocating for more comprehensive and robust strategies to ensure authentic unlearning without compromising model utility. Our code is available at: https://github.com/zzwjames/FailureLLMUnlearning.
Live content is unavailable. Log in and register to view live content