Skip to yearly menu bar Skip to main content


Poster

Controlling Language and Diffusion Models by Transporting Activations

Pau Rodriguez · Arno Blaas · Michal Klein · Luca Zappella · Nicholas Apostoloff · marco cuturi · Xavier Suau

Hall 3 + Hall 2B #470
[ ] [ Project Page ]
Wed 23 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviors in the generated output.In this paper we introduce Activation Transport (AcT), a general framework to steer activations guided by optimal transport theory that generalizes many previous activation-steering works. AcT is modality-agnostic and provides fine-grained control over the model behavior with negligible computational overhead, while minimally impacting model abilities. We experimentally show the effectiveness and versatility of our approach by addressing key challenges in large language models (LLMs) and text-to-image diffusion models (T2Is). For LLMs, we show that AcT can effectively mitigate toxicity, induce arbitrary concepts, and increase their truthfulness. In T2Is, we show how AcT enables fine-grained style control and concept negation.

Live content is unavailable. Log in and register to view live content