Poster
Reti-Diff: Illumination Degradation Image Restoration with Retinex-based Latent Diffusion Model
Chunming He · Chengyu Fang · Yulun Zhang · Longxiang Tang · Jinfa Huang · Kai Li · zhenhua guo · Xiu Li · Sina Farsiu
Hall 3 + Hall 2B #120
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination. Among these algorithms, diffusion-based models (DM) have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution. To tackle these problems, we propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task. Specifically, Reti-Diff comprises two significant components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RGformer). RLDM is designed to acquire Retinex knowledge, extracting reflectance and illumination priors to facilitate detailed reconstruction and illumination correction. RGformer subsequently utilizes these compact priors to guide the decomposition of image features into their respective reflectance and illumination components. Following this, RGformer further enhances and consolidates these decomposed features, resulting in the production of refined images with consistent content and robustness to handle complex degradation scenarios. Extensive experiments demonstrate that Reti-Diff outperforms existing methods on three IDIR tasks, as well as downstream applications.
Live content is unavailable. Log in and register to view live content