Poster
Dual Process Learning: Controlling Use of In-Context vs. In-Weights Strategies with Weight Forgetting
Suraj Anand · Michael Lepori · Jack Merullo · Ellie Pavlick
Hall 3 + Hall 2B #255
Abstract:
Language models have the ability to perform in-context learning (ICL), allowing them to flexibly adapt their behavior based on context. This contrasts with in-weights learning (IWL), where memorized information is encoded in model parameters after iterated observations of data. An ideal model should be able to flexibly deploy both of these abilities. Despite their apparent ability to learn in-context, language models are known to struggle when faced with unseen or rarely seen tokens (Land & Bartolo, 2024). Hence, we study , which we define as the ability of a model to execute in-context learning on arbitrary novel tokens -- so called because the model must generalize on the basis of e.g. sentence structure or task structure, rather than content encoded in token embeddings. We study structural in-context algorithms on both synthetic and naturalistic tasks using toy models, masked language models, and autoregressive language models. We find that structural ICL appears before quickly disappearing early in LM pretraining. While it has been shown that ICL can diminish during training (Singh et al., 2023), we find that prior work does not account for structural ICL. Building on Chen et al. (2024) 's active forgetting method, we introduce pretraining and finetuning methods that can modulate the preference for structural ICL and IWL. Importantly, this allows us to induce a where in-context and in-weights solutions coexist within a single model.
Live content is unavailable. Log in and register to view live content