Poster
Valid Conformal Prediction for Dynamic GNNs
Ed Davis · Ian Gallagher · Daniel Lawson · Patrick Rubin-Delanchy
Hall 3 + Hall 2B #185
Dynamic graphs provide a flexible data abstraction for modelling many sorts of real-world systems, such as transport, trade, and social networks. Graph neural networks (GNNs) are powerful tools allowing for different kinds of prediction and inference on these systems, but getting a handle on uncertainty, especially in dynamic settings, is a challenging problem.In this work we propose to use a dynamic graph representation known in the tensor literature as the unfolding, to achieve valid prediction sets via conformal prediction. This representation, a simple graph, can be input to any standard GNN and does not require any modification to existing GNN architectures or conformal prediction routines. One of our key contributions is a careful mathematical consideration of the different inference scenarios which can arise in a dynamic graph modelling context. For a range of practically relevant cases, we obtain valid prediction sets with almost no assumptions, even dispensing with exchangeability. In a more challenging scenario, which we call the semi-inductive regime, we achieve valid prediction under stronger assumptions, akin to stationarity. We provide real data examples demonstrating validity, showing improved accuracy over baselines, and sign-posting different failure modes which can occur when those assumptions are violated.
Live content is unavailable. Log in and register to view live content