Poster
Improving Pretraining Data Using Perplexity Correlations
Tristan Thrush · Christopher Potts · Tatsunori Hashimoto
Hall 3 + Hall 2B #254
Quality pretraining data is often seen as the key to high-performance language models. However, progress in understanding pretraining data has been slow due to the costly pretraining runs required for data selection experiments. We present a framework that avoids these costs and selects high-quality pretraining data without any LLM training of our own. Our work is based on a simple observation: LLM losses on many pretraining texts are correlated with downstream benchmark performance, and selecting high-correlation documents is an effective pretraining data selection method. We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations and perform data selection using a sample of 90 LLMs taken from the Open LLM Leaderboard on texts from tens of thousands of web domains. In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark, while matching the best data selector found in DataComp-LM, a hand-engineered bigram classifier. We have now also updated this paper to include results from preregistered experiments with new pretraining data on an aggregation of 22 benchmarks up to the 1.4B scale, showing increasing improvements of our method over others with more scale. A pip package with full documentation can be found here: https://github.com/TristanThrush/perplexity-correlations.
Live content is unavailable. Log in and register to view live content