Poster
Sensitivity Verification for Additive Decision Tree Ensembles
Arhaan Ahmad · Tanay Tayal · Ashutosh Gupta · S. Akshay
Tree ensemble models, such as Gradient Boosted Decision Trees (GBDTs) and random forests, are widely popular models for a variety of machine learning tasks. The power of these models comes from the ensemble of decision trees, which makes analysis of such models significantly harder than for single trees. As a result, recent work has focused on developing exact and approximate techniques for questions such as robustness verification, fairness and explainability for such models of tree ensembles.In this paper, we focus on a specific problem of feature sensitivity for additive decision tree ensembles and build a formal verification framework for a parametrized variant of it, where we also take into account the confidence of the tree ensemble in its output. We start by showing theoretical (NP-)hardness of the problem and explain how it relates to other verification problems. Next, we provide a novel encoding of the problem using pseudo-Boolean constraints. Based on this encoding, we develop a tunable algorithm to perform sensitivity analysis, which can trade off precision for running time. We implement our algorithm and study its performance on a suite of GBDT benchmarks from the literature. Our experiments show the practical utility of our approach and its improved performance compared to existing approaches.