Poster
CL-MFAP: A Contrastive Learning-Based Multimodal Foundation Model for Molecular Property Prediction and Antibiotic Screening
Gen Zhou · Sugitha Janarthanan · Yutong Lu · Pingzhao Hu
Hall 3 + Hall 2B #11
Due to the rise in antimicrobial resistance, identifying novel compounds with antibiotic potential is crucial for combatting this global health issue. However, traditional drug development methods are costly and inefficient. Recognizing the pressing need for more effective solutions, researchers have turned to machine learning techniques to streamline the prediction and development of novel antibiotic compounds. While foundation models have shown promise in antibiotic discovery, current mainstream efforts still fall short of fully leveraging the potential of multimodal molecular data. Recent studies suggest that contrastive learning frameworks utilizing multimodal data exhibit excellent performance in representation learning across various domains. Building upon this, we introduce CL-MFAP, an unsupervised contrastive learning (CL)-based multimodal foundation (MF) model specifically tailored for discovering small molecules with potential antibiotic properties (AP) using three types of molecular data. This model employs 1.6 million bioactive molecules with drug-like properties from the ChEMBL dataset to jointly pretrain three encoders: (1) a transformer-based encoder with rotary position embedding for processing SMILES strings; (2) another transformer-based encoder, incorporating a novel bi-level routing attention mechanism to handle molecular graph representations; and (3) a Morgan fingerprint encoder using a multilayer perceptron, to achieve the contrastive learning purpose. The CL-MFAP outperforms baseline models in antibiotic property prediction by effectively utilizing different molecular modalities and demonstrates superior domain-specific performance when fine-tuned for antibiotic-related property prediction tasks.
Live content is unavailable. Log in and register to view live content