Skip to yearly menu bar Skip to main content


Poster

CBQ: Cross-Block Quantization for Large Language Models

Xin Ding · Xiaoyu Liu · Zhijun Tu · Yun Zhang · Wei Li · Jie Hu · Hanting Chen · Yehui Tang · Zhiwei Xiong · Baoqun Yin · Yunhe Wang

Hall 3 + Hall 2B #287
[ ]
Thu 24 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Post-training quantization (PTQ) has played a pivotal role in compressing large language models (LLMs) at ultra-low costs. Although current PTQ methods have achieved promising results by addressing outliers and employing layer- or block-wise loss optimization techniques, they still suffer from significant performance degradation at ultra-low bits precision. To dissect this issue, we conducted an in-depth analysis of quantization errors specific to LLMs and surprisingly discovered that, unlike traditional sources of quantization errors, the growing number of model parameters, combined with the reduction in quantization bits, intensifies inter-layer and intra-layer dependencies, which severely impact quantization accuracy. This finding highlights a critical challenge in quantizing LLMs. To address this, we propose CBQ, a cross-block reconstruction-based PTQ method for LLMs. CBQ leverages a cross-block dependency to establish long-range dependencies across multiple blocks and integrates an adaptive LoRA-Rounding technique to manage intra-layer dependencies. To further enhance performance, CBQ incorporates a coarse-to-fine pre-processing mechanism for processing weights and activations. Extensive experiments show that CBQ achieves superior low-bit quantization (W4A4, W4A8, W2A16) and outperforms existing state-of-the-art methods across various LLMs and datasets. Notably, CBQ only takes 4.3 hours to quantize a weight-only quantization of a 4-bit LLAMA1-65B model, achieving a commendable trade off between performance and efficiency.

Live content is unavailable. Log in and register to view live content