Skip to yearly menu bar Skip to main content


Poster

Learning Clustering-based Prototypes for Compositional Zero-Shot Learning

Hongyu Qu · Jianan Wei · Xiangbo Shu · Wenguan Wang

Hall 3 + Hall 2B #612
[ ]
Fri 25 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Learning primitive (i.e., attribute and object) concepts from seen compositions is the primary challenge of Compositional Zero-Shot Learning (CZSL). Existing CZSL solutions typically rely on oversimplified data assumptions, e.g., modeling each primitive with a single centroid primitive presentation, ignoring the natural diversities of the attribute (resp. object) when coupled with different objects (resp. attribute). In this work, we develop ClusPro, a robust clustering-based prototype mining framework for CZSL that defines the conceptual boundaries of primitives through a set of diversified prototypes. Specifically, ClusPro conducts within-primitive clustering on the embedding space for automatically discovering and dynamically updating prototypes. To learn high-quality embeddings for discriminative prototype construction, ClusPro repaints a well-structured and independent primitive embedding space, ensuring intra-primitive separation and inter-primitive decorrelation through prototype-based contrastive learning and decorrelation learning. Moreover, ClusPro effectively performs prototype clustering in a non-parametric fashion without the introduction of additional learnable parameters or computational budget during testing. Experiments on three benchmarks demonstrate ClusPro outperforms various top-leading CZSL solutions under both closed-world and open-world settings. Our code is available at CLUSPRO.

Live content is unavailable. Log in and register to view live content