Poster
Training-Free Activation Sparsity in Large Language Models
James Liu · Pragaash Ponnusamy · Tianle Cai · placeholder · Yoon Kim · Ben Athiwaratkun
Hall 3 + Hall 2B #134
Activation sparsity can enable practical inference speedups in large language models (LLMs) by reducing the compute and memory-movement required for matrix multiplications during the forward pass. However, existing methods face limitations that inhibit widespread adoption. Some approaches are tailored towards older models with ReLU-based sparsity, while others require extensive continued pre-training on up to hundreds of billions of tokens. This paper describes TEAL (Training-Free Activation Sparsity in LLMs), a simple training-free method that applies magnitude-based activation sparsity to hidden states throughout the entire model. TEAL achieves 40-50\% model-wide sparsity with minimal performance degradation across Llama-2, Llama-3, and Mistral families, with sizes varying from 7B to 70B. We improve existing sparse kernels and demonstrate wall-clock decoding speed-ups of up to 1.53× and 1.8× at 40\% and 50\% model-wide sparsity. TEAL is compatible with weight quantization, enabling further efficiency gains.
Live content is unavailable. Log in and register to view live content