Poster
On the Transfer of Object-Centric Representation Learning
Aniket Rajiv Didolkar · Andrii Zadaianchuk · Anirudh Goyal · Michael Mozer · Yoshua Bengio · Georg Martius · Maximilian Seitzer
Hall 3 + Hall 2B #106
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities into individual vectors. Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing features from pre-trained foundation models like DINO. However, so far, these object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the underlying foundation models, which have been shown to be applicable to a wide range of data and tasks. Thus, in this work, we answer the question of whether current real-world capable object-centric methods exhibit similar levels of transferability by introducing a benchmark comprising seven different synthetic and real-world datasets. We analyze the factors influencing performance under transfer and find that training on diverse real-world images improves generalization to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Live content is unavailable. Log in and register to view live content