Skip to yearly menu bar Skip to main content


Poster

DARE the Extreme: Revisiting Delta-Parameter Pruning For Fine-Tuned Models

Wenlong Deng · Yize Zhao · Vala Vakilian · Minghui Chen · Xiaoxiao Li · Christos Thrampoulidis

Hall 3 + Hall 2B #268
[ ]
Fri 25 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Storing open-source fine-tuned models separately introduces redundancy and increases response times in applications utilizing multiple models. Delta-parameter pruning (DPP), particularly the random drop and rescale (DARE) method proposed by Yu et al., addresses this by pruning the majority of delta parameters—the differences between fine-tuned and pre-trained model weights—while typically maintaining minimal performance loss. However, DARE fails when either the pruning rate or the magnitude of the delta parameters is large. We highlight two key reasons for this failure: (1) an excessively large rescaling factor as pruning rates increase, and (2) high mean and variance in the delta parameters. To push DARE’s limits, we introduce DAREx (DARE the eXtreme), which features two algorithmic improvements: (1) DAREx-q, a rescaling factor modification that significantly boosts performance at high pruning rates (e.g., > 30% on COLA and SST2 for encoder models, with even greater gains in decoder models), and (2) DAREx-L2, which combines DARE with AdamR, an in-training method that applies appropriate delta regularization before DPP. We also demonstrate that DAREx-q can be seamlessly combined with vanilla parameter-efficient fine-tuning techniques like LoRA and can facilitate structural DPP. Additionally, we revisit the application of importance-based pruning techniques within DPP, demonstrating that they outperform random-based methods when delta parameters are large. Through this comprehensive study, we develop a pipeline for selecting the most appropriate DPP method under various practical scenarios.

Live content is unavailable. Log in and register to view live content