Skip to yearly menu bar Skip to main content


Poster

Recovering Manifold Structure Using Ollivier Ricci Curvature

Tristan L. Saidi · Abigail Hickok · Andrew J Blumberg

Hall 3 + Hall 2B #478
[ ] [ Project Page ]
Thu 24 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

We introduce ORC-ManL, a new algorithm to prune spurious edges from nearest neighbor graphs using a criterion based on Ollivier-Ricci curvature and estimated metric distortion. Our motivation comes from manifold learning: we show that when the data generating the nearest-neighbor graph consists of noisy samples from a low-dimensional manifold, edges that shortcut through the ambient space have more negative Ollivier-Ricci curvature than edges that lie along the data manifold. We demonstrate that our method outperforms alternative pruning methods and that it significantly improves performance on many downstream geometric data analysis tasks that use nearest neighbor graphs as input. Specifically, we evaluate on manifold learning, persistent homology, dimension estimation, and others. We also show that ORC-ManL can be used to improve clustering and manifold learning of single-cell RNA sequencing data. Finally, we provide empirical convergence experiments that support our theoretical findings.

Live content is unavailable. Log in and register to view live content