Skip to yearly menu bar Skip to main content


Poster

PhyloVAE: Unsupervised Learning of Phylogenetic Trees via Variational Autoencoders

Tianyu Xie · David Harry Tyensoung Richman · Jiansi Gao · Frederick A Matsen · Cheng Zhang

Hall 3 + Hall 2B #17
[ ] [ Project Page ]
Fri 25 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Learning informative representations of phylogenetic tree structures is essential for analyzing evolutionary relationships. Classical distance-based methods have been widely used to project phylogenetic trees into Euclidean space, but they are often sensitive to the choice of distance metric and may lack sufficient resolution. In this paper, we introduce phylogenetic variational autoencoders (PhyloVAEs), an unsupervised learning framework designed for representation learning and generative modeling of tree topologies. Leveraging an efficient encoding mechanism inspired by autoregressive tree topology generation, we develop a deep latent-variable generative model that facilitates fast, parallelized topology generation. PhyloVAE combines this generative model with a collaborative inference model based on learnable topological features, allowing for high-resolution representations of phylogenetic tree samples. Extensive experiments demonstrate PhyloVAE's robust representation learning capabilities and fast generation of phylogenetic tree topologies.

Live content is unavailable. Log in and register to view live content