Poster
On Targeted Manipulation and Deception when Optimizing LLMs for User Feedback
Marcus Williams · Micah Carroll · Adhyyan Narang · Constantin Weisser · Brendan Murphy · Anca Dragan
Hall 3 + Hall 2B #520
As LLMs become more widely deployed, there is increasing interest in directly optimizing for feedback from end users (e.g. thumbs up) in addition to feedback from paid annotators. However, training to maximize human feedback creates a perverse incentive structure for the AI to resort to manipulative or deceptive tactics to obtain positive feedback from users who are vulnerable to such strategies. We study this phenomenon by training LLMs with Reinforcement Learning with simulated user feedback in environments of practical LLM usage. In our settings, we find that: 1) Extreme forms of "feedback gaming" such as manipulation and deception are learned reliably; 2) Even if only 2% of users are vulnerable to manipulative strategies, LLMs learn to identify and target them while behaving appropriately with other users, making such behaviors harder to detect; 3) To mitigate this issue, it may seem promising to leverage continued safety training or LLM-as-judges during training to filter problematic outputs. Instead, we found that while such approaches help in some of our settings, they backfire in others, sometimes even leading to subtler manipulative behaviors. We hope our results can serve as a case study which highlights the risks of using gameable feedback sources -- such as user feedback -- as a target for RL. Our code is publicly available. Warning: some of our examples may be upsetting.
Live content is unavailable. Log in and register to view live content