Skip to yearly menu bar Skip to main content


Poster

Magpie: Alignment Data Synthesis from Scratch by Prompting Aligned LLMs with Nothing

Zhangchen Xu · Fengqing Jiang · Luyao Niu · Yuntian Deng · Radha Poovendran · Yejin Choi · Bill Yuchen Lin

Hall 3 + Hall 2B #265
[ ] [ Project Page ]
Wed 23 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

High-quality instruction data is critical for aligning large language models (LLMs). Although some models, such as Llama-3-Instruct, have open weights, their alignment data remain private, which hinders the democratization of AI. High human labor costs and a limited, predefined scope for prompting prevent existing open-source data creation methods from scaling effectively, potentially limiting the diversity and quality of public alignment datasets. Is it possible to synthesize high-quality instruction data at scale by extracting it directly from an aligned LLM? We present a self-synthesis method for generating large-scale alignment data named Magpie. Our key observation is that aligned LLMs like Llama-3-Instruct can generate a user query when we input only the pre-query templates up to the position reserved for user messages, thanks to their auto-regressive nature. We use this method to prompt Llama-3-Instruct and generate 4 million instructions along with their corresponding responses. We further introduce extensions of Magpie for filtering, generating multi-turn, preference optimization, domain-specific and multilingual datasets. We perform a comprehensive analysis of the Magpie-generated data. To compare Magpie-generated data with other public instruction datasets (e.g., ShareGPT, WildChat, Evol-Instruct, UltraChat, OpenHermes, Tulu-V2-Mix, GenQA), we fine-tune Llama-3-8B-Base with each dataset and evaluate the performance of the fine-tuned models. Our results indicate that using Magpie for supervised fine-tuning (SFT) solely can surpass the performance of previous public datasets utilized for both SFT and preference optimization, such as direct preference optimization with UltraFeedback. We also show that in some tasks, models supervised fine-tuned with Magpie perform comparably to the official Llama-3-8B-Instruct, despite the latter being enhanced with 10 million data points through SFT and subsequent preference optimization. This advantage is evident on alignment benchmarks such as AlpacaEval, ArenaHard, and WildBench.

Live content is unavailable. Log in and register to view live content