Skip to yearly menu bar Skip to main content


Poster

Matérn Kernels for Tunable Implicit Surface Reconstruction

Maximilian Weiherer · Bernhard Egger

Hall 3 + Hall 2B #82
[ ]
Thu 24 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

We propose to use the family of Matérn kernels for implicit surface reconstruction, building upon the recent success of kernel methods for 3D reconstruction of oriented point clouds. As we show from a theoretical and practical perspective, Matérn kernels have some appealing properties which make them particularly well suited for surface reconstruction---outperforming state-of-the-art methods based on the arc-cosine kernel while being significantly easier to implement, faster to compute, and scalable. Being stationary, we demonstrate that Matérn kernels allow for tunable surface reconstruction in the same way as Fourier feature mappings help coordinate-based MLPs overcome spectral bias. Moreover, we theoretically analyze Matérn kernels' connection to SIREN networks as well as their relation to previously employed arc-cosine kernels. Finally, based on recently introduced Neural Kernel Fields, we present data-dependent Matérn kernels and conclude that especially the Laplace kernel (being part of the Matérn family) is extremely competitive, performing almost on par with state-of-the-art methods in the noise-free case while having a more than five times shorter training time.

Live content is unavailable. Log in and register to view live content