Skip to yearly menu bar Skip to main content


Poster

Procedural Synthesis of Synthesizable Molecules

Michael Sun · Alston Lo · Minghao Guo · Jie Chen · Connor Coley · Wojciech Matusik

Hall 3 + Hall 2B #3
[ ] [ Project Page ]
Thu 24 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Designing synthetically accessible molecules and recommending analogs to unsynthesizable molecules are important problems for accelerating molecular discovery. We reconceptualize both problems using ideas from program synthesis. Drawing inspiration from syntax-guided synthesis approaches, we decouple the syntactic skeleton from the semantics of a synthetic tree to create a bilevel framework for reasoning about the combinatorial space of synthesis pathways. Given a molecule we aim to generate analogs for, we iteratively refine its skeletal characteristics via Markov Chain Monte Carlo simulations over the space of syntactic skeletons. Given a black-box oracle to optimize, we formulate a joint design space over syntactic templates and molecular descriptors and introduce evolutionary algorithms that optimize both syntactic and semantic dimensions synergistically. Our key insight is that once the syntactic skeleton is set, we can amortize over the search complexity of deriving the program's semantics by training policies to fully utilize the fixed horizon Markov Decision Process imposed by the syntactic template. We demonstrate performance advantages of our bilevel framework for synthesizable analog generation and synthesizable molecule design. Notably, our approach offers the user explicit control over the resources required to perform synthesis and biases the design space towards simpler solutions, making it particularly promising for autonomous synthesis platforms. Supporting code is at https://github.com/shiningsunnyday/SynthesisNet.

Live content is unavailable. Log in and register to view live content