Skip to yearly menu bar Skip to main content


Poster

Diffusion Transformer Captures Spatial-Temporal Dependencies: A Theory for Gaussian Process Data

Hengyu Fu · Zehao Dou · Jiawei Guo · Mengdi Wang · Minshuo Chen

Hall 3 + Hall 2B #581
[ ]
Thu 24 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Diffusion Transformer, the backbone of Sora for video generation, successfully scales the capacity of diffusion models, pioneering new avenues for high-fidelity sequential data generation. Unlike static data such as images, sequential data consists of consecutive data frames indexed by time, exhibiting rich spatial and temporal dependencies. These dependencies represent the underlying dynamic model and are critical to validate the generated data. In this paper, we make the first theoretical step towards bridging diffusion transformers for capturing spatial-temporal dependencies. Specifically, we establish score approximation and distribution estimation guarantees of diffusion transformers for learning Gaussian process data with covariance functions of various decay patterns. We highlight how the spatial-temporal dependencies are captured and affect learning efficiency. Our study proposes a novel transformer approximation theory, where the transformer acts to unroll an algorithm. We support our theoretical results by numerical experiments, providing strong evidence that spatial-temporal dependencies are captured within attention layers, aligning with our approximation theory.

Live content is unavailable. Log in and register to view live content