Poster
Accessing Vision Foundation Models via ImageNet-1K
Yitian Zhang · Xu Ma · Yue Bai · Huan Wang · Yun Fu
Hall 3 + Hall 2B #96
Vision foundation models are renowned for the generalization ability due to massive training data. Nevertheless, they demand tremendous training resources, and the training data is often inaccessible, e.g., CLIP, DINOv2, posing great challenges to developing derivatives that could facilitate the research. In this work, we offer a very simple and general solution, named Proteus, to distill foundation models into smaller equivalents on ImageNet-1K without access to the original training data. Specifically, we remove the designs from conventional knowledge distillation settings that result in dataset bias and present three levels of training objectives, i.e., token, patch, and feature, to maximize the efficacy of knowledge transfer. In this manner, Proteus is trained at ImageNet-level costs with surprising ability, facilitating the accessibility of training foundation models for the broader research community. When leveraging DINOv2-g/14 as the teacher, Proteus-L/14 matches the performance of the Oracle method DINOv2-L/14 (142M training data) across 19 benchmarks and outperforms other vision foundation models including CLIP-L/14 (400M), OpenCLIP-L/14 (400M/2B) and SynCLR-L/14 (600M) with a significantly smaller training set of 1.2M images.
Live content is unavailable. Log in and register to view live content