Poster
Multi-session, multi-task neural decoding from distinct cell-types and brain regions
Mehdi Azabou · Krystal Pan · Vinam Arora · Ian Knight · Eva Dyer · Blake A Richards
Hall 3 + Hall 2B #550
Recent work has shown that scale is important for improved brain decoding, with more data leading to greater decoding accuracy. However, large-scale decoding across many different datasets is challenging because neural circuits are heterogeneous---each brain region contains a unique mix of cellular sub-types, and the responses to different stimuli are diverse across regions and sub-types. It is unknown whether it is possible to pre-train and transfer brain decoding models between distinct tasks, cellular sub-types, and brain regions. To address these questions, we developed a multi-task transformer architecture and trained it on the entirety of the Allen Institute's Brain Observatory dataset. This dataset contains responses from over 100,000 neurons in 6 areas of the brains of mice, observed with two-photon calcium imaging, recorded while the mice observed different types of visual stimuli. Our results demonstrate that transfer is indeed possible -combining data from different sources is beneficial for a number of downstream decoding tasks. As well, we can transfer the model between regions and sub-types, demonstrating that there is in fact common information in diverse circuits that can be extracted by an appropriately designed model. Interestingly, we found that the model's latent representations showed clear distinctions between different brain regions and cellular sub-types, even though it was never given any information about these distinctions. Altogether, our work demonstrates that training a large-scale neural decoding model on diverse data is possible, and this provides a means of studying the differences and similarities between heterogeneous neural circuits.
Live content is unavailable. Log in and register to view live content