Skip to yearly menu bar Skip to main content


Poster

IV-mixed Sampler: Leveraging Image Diffusion Models for Enhanced Video Synthesis

Shitong Shao · zikai zhou · Lichen Bai · Haoyi Xiong · Zeke Xie

Hall 3 + Hall 2B #151
[ ] [ Project Page ]
Fri 25 Apr midnight PDT — 2:30 a.m. PDT

Abstract:

Exploring suitable solutions to improve performance by increasing the computational cost of inference in visual diffusion models is a highly promising direction. Sufficient prior studies have demonstrated that correctly scaling up computation in the sampling process can successfully lead to improved generation quality, enhanced image editing, and compositional generalization. While there have been rapid advancements in developing inference-heavy algorithms for improved image generation, relatively little work has explored inference scaling laws in video diffusion models (VDMs). Furthermore, existing research shows only minimal performance gains that are perceptible to the naked eye. To address this, we design a novel training-free algorithm IV-Mixed Sampler that leverages the strengths of image diffusion models (IDMs) to assist VDMs surpass their current capabilities. The core of IV-Mixed Sampler is to use IDMs to significantly enhance the quality of each video frame and VDMs ensure the temporal coherence of the video during the sampling process. Our experiments have demonstrated that IV-Mixed Sampler achieves state-of-the-art performance on 4 benchmarks including UCF-101-FVD, MSR-VTT-FVD, Chronomagic-Bench-150/1649, and VBench. For example, the open-source Animatediff with IV-Mixed Sampler reduces the UMT-FVD score from 275.2 to 228.6, closing to 223.1 from the closed-source Pika-2.0.

Live content is unavailable. Log in and register to view live content