Poster
Segment Any 3D Object with Language
Seungjun Lee · Yuyang Zhao · Gim H Lee
Hall 3 + Hall 2B #91
Abstract:
In this paper, we investigate Open-Vocabulary 3D Instance Segmentation (OV-3DIS) with free-form language instructions. Earlier works mainly rely on annotated base categories for training which leads to limited generalization to unseen novel categories. To mitigate the poor generalizability to novel categories, recent works generate class-agnostic masks or projecting generalized masks from 2D to 3D, subsequently classifying them with the assistance of 2D foundation model. However, these works often disregard semantic information in the mask generation, leading to sub-optimal performance. Instead, generating generalizable but semantic-aware masks directly from 3D point clouds would result in superior outcomes. To the end, we introduce Segment any 3D Object with LanguagE (SOLE), which is a semantic and geometric-aware visual-language learning framework with strong generalizability by generating semantic-related masks directly from 3D point clouds. Specifically, we propose a multimodal fusion network to incorporate multimodal semantics in both backbone and decoder. In addition, to align the 3D segmentation model with various language instructions and enhance the mask quality, we introduce three types of multimodal associations as supervision. Our SOLE outperforms previous methods by a large margin on ScanNetv2, ScanNet200, and Replica benchmarks, and the results are even closed to the fully-supervised counterpart despite the absence of class annotations in the training. Furthermore, extensive qualitative results demonstrate the versatility of our SOLE to language instructions. The code will be made publicly available.
Live content is unavailable. Log in and register to view live content