Poster
Generative Verifiers: Reward Modeling as Next-Token Prediction
Lunjun Zhang · Arian Hosseini · Hritik Bansal · Seyed Mehran Kazemi · Aviral Kumar · Rishabh Agarwal
Hall 3 + Hall 2B #233
Verifiers or reward models are often used to enhance the reasoning performance of large language models (LLMs). A common approach is the Best-of-N method, where N candidate solutions generated by the LLM are ranked by a verifier, and the best one is selected. While LLM-based verifiers are typically trained as discriminative classifiers to score solutions, they do not utilize the text generation capabilities of pretrained LLMs. To overcome this limitation, we instead propose training verifiers using the ubiquitous next-token prediction objective, jointly on verification and solution generation. Compared to standard verifiers, such generative verifiers (GenRM) can benefit from several advantages of LLMs: they integrate seamlessly with instruction tuning, enable chain-of-thought reasoning, and can utilize additional test-time compute via majority voting for better verification. We demonstrate that GenRM outperforms discriminative, DPO verifiers, and LLM-as-a-Judge, resulting in large performance gains with Best-of-N, namely 5% → 45.3% on algorithmic tasks, 73% → 93.4% on GSM8K, and 28% →44.6% on easy-to-hard generalization on MATH. Furthermore, we find that training GenRM with synthetic verification rationales is sufficient to pick out subtle errors on math problems. Finally, we demonstrate that generative verifiers scale favorably with model size and inference-time compute.
Live content is unavailable. Log in and register to view live content