Poster
Differentiable Causal Discovery for Latent Hierarchical Causal Models
Parjanya Prashant · Ignavier Ng · Kun Zhang · Biwei Huang
Hall 3 + Hall 2B #440
Discovering causal structures with latent variables from observational data is a fundamental challenge in causal discovery. Existing methods often rely on constraint-based, iterative discrete searches, limiting their scalability for large numbers of variables. Moreover, these methods frequently assume linearity or invertibility, restricting their applicability to real-world scenarios. We present new theoretical results on the identifiability of non-linear latent hierarchical causal models, relaxing previous assumptions in the literature about the deterministic nature of latent variables and exogenous noise. Building on these insights, we develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models. To the best of our knowledge, this is the first work to propose a differentiable causal discovery method for non-linear latent hierarchical models. Our approach outperforms existing methods in both accuracy and scalability. Furthermore, we demonstrate its practical utility by learning interpretable hierarchical latent structures from high-dimensional image data and demonstrate its effectiveness on downstream tasks such as transfer learning.
Live content is unavailable. Log in and register to view live content