Poster
MuHBoost: Multi-Label Boosting For Practical Longitudinal Human Behavior Modeling
Nguyen Thach · Patrick Habecker · Anika Eisenbraun · W. Alex Mason · Kimberly Tyler · Bilal Khan · Hau Chan
Hall 3 + Hall 2B #20
Longitudinal human behavior modeling has received increasing attention over the years due to its widespread applications to patient monitoring, dietary and lifestyle recommendations, and just-in-time intervention for at-risk individuals (e.g., problematic drug users and struggling students), to name a few. Using in-the-moment health data collected via ubiquitous devices (e.g., smartphones and smartwatches), this multidisciplinary field focuses on developing predictive models for certain health or well-being outcomes (e.g., depression and stress) in the short future given the time series of individual behaviors (e.g., resting heart rate, sleep quality, and current feelings). Yet, most existing models on these data, which we refer to as ubiquitous health data, do not achieve adequate accuracy. The latest works that yielded promising results have yet to consider realistic aspects of ubiquitous health data (e.g., containing features of different types and high rate of missing values) and the consumption of various resources (e.g., computing power, time, and cost). Given these two shortcomings, it is dubious whether these studies could translate to realistic settings. In this paper, we propose MuHBoost, a multi-label boosting method for addressing these shortcomings, by leveraging advanced methods in large language model (LLM) prompting and multi-label classification (MLC) to jointly predict multiple health or well-being outcomes. Because LLMs can hallucinate when tasked with answering multiple questions simultaneously, we also develop two variants of MuHBoost that alleviate this issue and thereby enhance its predictive performance. We conduct extensive experiments to evaluate MuHBoost and its variants on 13 health and well-being prediction tasks defined from four realistic ubiquitous health datasets. Our results show that our three developed methods outperform all considered baselines across three standard MLC metrics, demonstrating their effectiveness while ensuring resource efficiency.
Live content is unavailable. Log in and register to view live content