Poster
Conditional Diffusion with Ordinal Regression: Longitudinal Data Generation for Neurodegenerative Disease Studies
Hyuna Cho · Ziquan Wei · Seungjoo Lee · Tingting Dan · Guorong Wu · Won Hwa Kim
Hall 3 + Hall 2B #63
Modeling the progression of neurodegenerative diseases such as Alzheimer’s disease (AD) is crucial for early detection and prevention given their irreversible nature. However, the scarcity of longitudinal data and complex disease dynamics make the analysis highly challenging. Moreover, longitudinal samples often contain irregular and large intervals between subject visits, which underscore the necessity for advanced data generation techniques that can accurately simulate disease progression over time. In this regime, we propose a novel conditional generative model for synthesizing longitudinal sequences and present its application to neurodegenerative disease data generation conditioned on multiple time-dependent ordinal factors, such as age and disease severity. Our method sequentially generates continuous data by bridging gaps between sparse data points with a diffusion model, ensuring a realistic representation of disease progression. The synthetic data are curated to integrate both cohort-level and individual-specific characteristics, where the cohort-level representations are modeled with an ordinal regression to capture longitudinally monotonic behavior. Extensive experiments on four AD biomarkers validate the superiority of our method over nine baseline approaches, highlighting its potential to be applied to a variety of longitudinal data generation.
Live content is unavailable. Log in and register to view live content