Poster
Manifold Constraint Reduces Exposure Bias in Accelerated Diffusion Sampling
Yuzhe YAO · Jun Chen · Zeyi Huang · Haonan Lin · Mengmeng Wang · Guang Dai · Jingdong Wang
Hall 3 + Hall 2B #141
Diffusion models have demonstrated significant potential for generating high-quality images, audio, and videos. However, their iterative inference process entails substantial computational costs, limiting practical applications. Recently, researchers have introduced accelerated sampling methods that enable diffusion models to generate samples with far fewer timesteps than those used during training. Nonetheless, as the number of sampling steps decreases, the prediction errors significantly degrade the quality of generated outputs. Additionally, the exposure bias in diffusion models further amplifies these errors. To address these challenges, we leverage a manifold hypothesis to explore the exposure bias problem in depth. Based on this geometric perspective, we propose a manifold constraint that effectively reduces exposure bias during accelerated sampling of diffusion models. Notably, our method involves no additional training and requires only minimal hyperparameter tuning. Extensive experiments demonstrate the effectiveness of our approach, achieving a FID score of 15.60 with 10-step SDXL on MS-COCO, surpassing the baseline by a reduction of 2.57 in FID.
Live content is unavailable. Log in and register to view live content