Skip to yearly menu bar Skip to main content


Poster

Neural Fluid Simulation on Geometric Surfaces

Haoxiang Wang · Tao Yu · Hui Qiao · Qionghai Dai

Hall 3 + Hall 2B #610
[ ]
Fri 25 Apr 7 p.m. PDT — 9:30 p.m. PDT

Abstract:

Incompressible fluid on the surface is an interesting research area in the fluid simulation, which is the fundamental building block in visual effects, design of liquid crystal films, scientific analyses of atmospheric and oceanic phenomena, etc. The task brings two key challenges: the extension of the physical laws on 3D surfaces and the preservation of the energy and volume. Traditional methods rely on grids or meshes for spatial discretization, which leads to high memory consumption and a lack of robustness and adaptivity for various mesh qualities and representations. Many implicit representations based simulators like INSR are proposed for the storage efficiency and continuity, but they face challenges in the surface simulation and the energy dissipation. We propose a neural physical simulation framework on the surface with the implicit neural representation. Our method constructs a parameterized vector field with the exterior calculus and Closest Point Method on the surfaces, which guarantees the divergence-free property and enables the simulation on different surface representations (e.g. implicit neural represented surfaces). We further adopt a corresponding covariant derivative based advection process for surface flow dynamics and energy preservation. Our method shows higher accuracy, flexibility and memory-efficiency in the simulations of various surfaces with low energy dissipation. Numerical studies also highlight the potential of our framework across different practical applications such as vorticity shape generation and vector field Helmholtz decomposition.

Live content is unavailable. Log in and register to view live content