Poster
On the Completeness of Invariant Geometric Deep Learning Models
Zian Li · Xiyuan Wang · Shijia Kang · Muhan Zhang
Hall 3 + Hall 2B #189
Invariant models, one important class of geometric deep learning models, are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds. These models are characterized by their simplicity, good experimental results and computational efficiency. However, their theoretical expressive power still remains unclear, restricting a deeper understanding of the potential of such models. In this work, we concentrate on characterizing the theoretical expressiveness of a wide range of invariant models under fully-connected conditions. We first rigorously characterize the expressiveness of the most classic invariant model, message-passing neural networks incorporating distance (DisGNN), restricting its unidentifiable cases to be only highly symmetric point clouds. We then prove that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks, can effectively break these corner cases' symmetry and thus achieve E(3)-completeness. By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness; 2) DimeNet, GemNet and SphereNet, three well-established invariant models, are also all capable of achieving E(3)-completeness. Our theoretical results fill the gap in the expressive power of invariant models, contributing to a rigorous and comprehensive understanding of their capabilities.
Live content is unavailable. Log in and register to view live content