Poster
Algorithmic Stability Based Generalization Bounds for Adversarial Training
Runzhi Tian · Yongyi Mao
Hall 3 + Hall 2B #448
In this paper, we present a novel stability analysis of adversarial training and prove generalization upper bounds in terms of an expansiveness property of adversarial perturbations used during training and used for evaluation. These expansiveness parameters appear not only govern the vanishing rate of the generalization error but also govern its scaling constant. Our proof techniques do not rely on artificial assumptions of the adversarial loss, as are typically used in previous works. Our bound attributes the robust overfitting in PGD-based adversarial training to the sign function used in the PGD attack, resulting in a bad expansiveness parameter. The peculiar choice of sign function in the PGD attack appears to impact adversarial training both in terms of (inner) optimization and in terms of generalization, as shown in this work. This aspect has been largely overlooked to date. Going beyond the sign-function based PGD attacks, we further show that poor expansiveness properties exist in a wide family of PGD-like iterative attack algorithms, which may highlight an intrinsic difficulty in adversarial training.
Live content is unavailable. Log in and register to view live content