Processing math: 100%
Skip to yearly menu bar Skip to main content


Poster

Improved Sampling Of Diffusion Models In Fluid Dynamics With Tweedie's Formula

Youssef Shehata · Benjamin Holzschuh · Nils Thuerey

Hall 3 + Hall 2B #26
[ ] [ Project Page ]
Fri 25 Apr midnight PDT — 2:30 a.m. PDT

Abstract: State-of-the-art Denoising Diffusion Probabilistic Models (DDPMs) rely on an expensive sampling process with a large Number of Function Evaluations (NFEs) to provide high-fidelity predictions. This computational bottleneck renders diffusion models less appealing as surrogates for the spatio-temporal prediction of physics-based problems with long rollout horizons. We propose Truncated Sampling Models, enabling single-step and few-step sampling with elevated fidelity by simple truncation of the diffusion process, reducing the gap between DDPMs and deterministic single-step approaches. We also introduce a novel approach, Iterative Refinement, to sample pre-trained DDPMs by reformulating the generative process as a refinement process with few sampling steps. Both proposed methods enable significant improvements in accuracy compared to DDPMs, DDIMs, and EDMs with NFEs 10 on a diverse set of experiments, including incompressible and compressible turbulent flow and airfoil flow uncertainty simulations. Our proposed methods provide stable predictions for long rollout horizons in time-dependent problems and are able to learn all modes of the data distribution in steady-state problems with high uncertainty.

Live content is unavailable. Log in and register to view live content