Poster
RTDiff: Reverse Trajectory Synthesis via Diffusion for Offline Reinforcement Learning
Qianlan Yang · Yu-Xiong Wang
Hall 3 + Hall 2B #555
In offline reinforcement learning (RL), managing the distribution shift between the learned policy and the static offline dataset is a persistent challenge that can result in overestimated values and suboptimal policies. Traditional offline RL methods address this by introducing conservative biases that limit exploration to well-understood regions, but they often overly restrict the agent's generalization capabilities. Recent work has sought to generate trajectories using generative models to augment the offline dataset, yet these methods still struggle with overestimating synthesized data, especially when out-of-distribution samples are produced. To overcome this issue, we propose RTDiff, a novel diffusion-based data augmentation technique that synthesizes trajectories in reverse, moving from unknown to known states. Such reverse generation naturally mitigates the risk of overestimation by ensuring that the agent avoids planning through unknown states. Additionally, reverse trajectory synthesis allows us to generate longer, more informative trajectories that take full advantage of diffusion models' generative strengths while ensuring reliability. We further enhance RTDiff by introducing flexible trajectory length control and improving the efficiency of the generation process through noise management. Our empirical results show that RTDiff significantly improves the performance of several state-of-the-art offline RL algorithms across diverse environments, achieving consistent and superior results by effectively overcoming distribution shift.
Live content is unavailable. Log in and register to view live content