Poster
Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models
Fu-Yun Wang · Yunhao Shui · Jingtan Piao · Keqiang Sun · Hongsheng Li
Hall 3 + Hall 2B #139
Diffusion models have made substantial advances in image generation, yet models trained on large, unfiltered datasets often yield outputs misaligned with human preferences. Numerous methods have already been proposed to fine-tune pre-trained diffusion models, achieving notable improvements in aligning generated outputs with human preferences. However, we point out that existing preference alignment methods neglect the critical role of handling unconditional/negative-conditional outputs, leading to a diminished capacity to avoid generating undesirable outcomes. This oversight limits the efficacy of classifier-free guidance (CFG), which relies on the contrast between conditional generation and unconditional/negative-conditional generation to optimize output quality. In response, we propose a straightforward but consistently effective approach that involves training a model specifically attuned to negative preferences. This method does not require new training strategies or datasets but rather involves minor modifications to existing techniques. Our approach integrates seamlessly with models such as SD15, SDXL, video diffusion models and models that have undergone preference optimization, consistently enhancing their ability to produce more human preferences aligned outputs.
Live content is unavailable. Log in and register to view live content