Oral Session
Oral Session 3D
Moderators: Erin Grant · Wenxuan Zhang
MAP: Multi-Human-Value Alignment Palette
Xinran Wang · Qi Le · Ammar Ahmed · Enmao Diao · Yi Zhou · Nathalie Baracaldo · Jie Ding · Ali Anwar
Ensuring that generative AI systems align with human values is essential but challenging, especially when considering multiple human values and their potential trade-offs. Since human values can be personalized and dynamically change over time, the desirable levels of value alignment vary across different ethnic groups, industry sectors, and user cohorts. Within existing frameworks, it is hard to define human values and align AI systems accordingly across different directions simultaneously, such as harmlessness, helpfulness, and positiveness. To address this, we develop a novel, first-principle approach called Multi-Human-Value Alignment Palette (MAP), which navigates the alignment across multiple human values in a structured and reliable way. MAP formulates the alignment problem as an optimization task with user-defined constraints, which define human value targets. It can be efficiently solved via a primal-dual approach, which determines whether a user-defined alignment target is achievable and how to achieve it. We conduct a detailed theoretical analysis of MAP by quantifying the trade-offs between values, the sensitivity to constraints, the fundamental connection between multi-value alignment and sequential alignment, and proving that linear weighted rewards are sufficient for multi-value alignment. Extensive experiments demonstrate MAP's ability to align multiple values in a principled manner while delivering strong empirical performance across various tasks.
Limits to scalable evaluation at the frontier: LLM as judge won’t beat twice the data
Florian Eddie Dorner · Vivian Nastl · Moritz Hardt
High quality annotations are increasingly a bottleneck in the explosively growing machine learning ecosystem. Scalable evaluation methods that avoid costly annotation have therefore become an important research ambition. Many hope to use strong existing models in lieu of costly labels to provide cheap model evaluations. Unfortunately, this method of using models as judges introduces biases, such as self-preferencing, that can distort model comparisons. An emerging family of debiasing tools promises to fix these issues by using a few high quality labels to debias a large number of model judgments. In this paper, we study how far such debiasing methods, in principle, can go. Our main result shows that when the judge is no more accurate than the evaluated model, no debiasing method can decrease the required amount of ground truth labels by more than half. Our result speaks to the severe limitations of the LLM-as-a-judge paradigm at the evaluation frontier where the goal is to assess newly released models that are possibly better than the judge. Through an empirical evaluation, we demonstrate that the sample size savings achievable in practice are even more modest than what our theoretical limit suggests. Along the way, our work provides new observations about debiasing methods for model evaluation, and points out promising avenues for future work.
Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
Jaehun Jung · Faeze Brahman · Yejin Choi
We present a principled approach to provide LLM-based evaluation with a rigorous guarantee of human agreement. We first propose that a reliable evaluation method should not uncritically rely on model preferences for pairwise evaluation, but rather assess the confidence of judge models and selectively decide when to trust its judgement. We then show that under this selective evaluation framework, human agreement can be provably guaranteed---such that the model evaluation aligns with that of humans to a user-specified agreement level. As part of our framework, we also introduce Simulated Annotators, a novel confidence estimation method that significantly improves judge calibration and thus enables high coverage of evaluated instances. Finally, we propose Cascaded Selective Evaluation, where we use cheaper models as initial judges and escalate to stronger models only when necessary---again, while still providing a provable guarantee of human agreement. Experimental results show that Cascaded Selective Evaluation guarantees strong alignment with humans, far beyond what LLM judges could achieve without selective evaluation. For example, on a subset of Chatbot Arena where GPT-4 almost never achieves 80% human agreement, our method, even while employing substantially cost-effective models such as Mistral-7B, guarantees over 80% human agreement with almost 80% test coverage.
AI as Humanity’s Salieri: Quantifying Linguistic Creativity of Language Models via Systematic Attribution of Machine Text against Web Text
Ximing Lu · Melanie Sclar · Skyler Hallinan · Niloofar Mireshghallah · Jiacheng Liu · Seungju Han · Allyson Ettinger · Liwei Jiang · Khyathi Chandu · Nouha Dziri · Yejin Choi
Creativity has long been considered one of the most difficult aspect of human intelligence for AI to mimic. However, the rise of Large Language Models (LLMs), like ChatGPT, has raised questions about whether AI can match or even surpass human creativity. We present CREATIVITY INDEX as the first step to quantify the linguistic creativity of a text by reconstructing it from existing text snippets on the web. CREATIVITY INDEX is motivated by the hypothesis that the seemingly remarkable creativity of LLMs may be attributable in large part to the creativity of human-written texts on the web. To compute CREATIVITY INDEX efficiently, we introduce DJ SEARCH, a novel dynamic programming algorithm that can search verbatim and near-verbatim matches of text snippets from a given document against the web. Experiments reveal that the CREATIVITY INDEX of professional human authors is on average 66.2% higher than that of LLMs, and that alignment reduces the CREATIVITY INDEX of LLMs by an average of 30.1%. In addition, we find that distinguished authors like Hemingway exhibit measurably higher CREATIVITY INDEX compared to other human writers. Finally, we demonstrate that CREATIVITY INDEX can be used as a surprisingly effective criterion for zero-shot machine text detection, surpassing the strongest existing zero-shot system, DetectGPT, by a significant margin of 30.2%, and even outperforming the strongest supervised system, GhostBuster, in five out of six domains.
Consistency Checks for Language Model Forecasters
Daniel Paleka · Abhimanyu Pallavi Sudhir · Alejandro Alvarez · Vineeth Bhat · Adam Shen · Evan Wang · Florian Tramer
Forecasting is a task that is difficult to evaluate: the ground truth can only be known in the future. Recent work showing LLM forecasters rapidly approaching human-level performance begs the question: how can we benchmark and evaluate these forecasters instantaneously? Following the consistency check framework, we measure the performance of forecasters in terms of the consistency of their predictions on different logically-related questions. We propose a new, general consistency metric based on arbitrage: for example, if a forecasting AI illogically predicts that both the Democratic and Republican parties have 60\% probability of winning the 2024 US presidential election, an arbitrageur could trade against the forecaster's predictions and make a profit. We build an automated evaluation system that generates a set of base questions, instantiates consistency checks from these questions, elicits the predictions of the forecaster, and measures the consistency of the predictions. We then build a standard, proper-scoring-rule forecasting benchmark, and show that our (instantaneous) consistency metrics correlate strongly with LLM forecasters' ground truth Brier scores (which are only known in the future). We also release a consistency benchmark that resolves in 2028, providing a long-term evaluation tool for forecasting.
Probabilistic Learning to Defer: Handling Missing Expert Annotations and Controlling Workload Distribution
Cuong Nguyen · Thanh-Toan Do · Gustavo Carneiro
Recent progress in machine learning research is gradually shifting its focus towards human-AI cooperation due to the advantages of exploiting the reliability of human experts and the efficiency of AI models. One of the promising approaches in human-AI cooperation is learning to defer (L2D), where the system analyses the input data and decides to make its own decision or defer to human experts. Although L2D has demonstrated state-of-the-art performance, in its standard setting, L2D entails a severe limitation: all human experts must annotate the whole training dataset of interest, resulting in a time-consuming and expensive annotation process that can subsequently influence the size and diversity of the training set. Moreover, the current L2D does not have a principled way to control workload distribution among human experts and the AI classifier, which is critical to optimise resource allocation. We, therefore, propose a new probabilistic modelling approach inspired by the mixture-of-experts, where the Expectation - Maximisation algorithm is leverage to address the issue of missing expert's annotations. Furthermore, we introduce a constraint, which can be solved efficiently during the E-step, to control the workload distribution among human experts and the AI classifier. Empirical evaluation on synthetic and real-world datasets shows that our proposed probabilistic approach performs competitively, or surpasses previously proposed methods assessed on the same benchmarks.