Workshop
XAI4Science: From Understanding Model Behavior to Discovering New Scientific Knowledge
Gianmarco Mengaldo · Jiawen Wei · Christopher J. Anders · Mohammad Emtiyaz Khan · Abeba Birhane · Sara Hooker · Sebastian Lapuschkin
Peridot 201&206
Sat 26 Apr, 5:30 p.m. PDT
Machine learning (ML) models are impressive when they work but they can also show unreliable, untrustworthy, and harmful dangerous behavior. Such behavior is even more common in the era of large models, such as chatGPT, which are quickly being adopted even though we do not understand why they work so well and fail miserably at times. Unfortunately, such rapid dissemination encourages irresponsible use, for example, to spread misinformation or create deep fakes, while hindering the efforts to use them to solve pressing societal problems and advance human knowledge. Ideally, we want models that have a human-like capacity to learn by observing, theorizing, and validating the theories to improve the understanding of the world. At the very least, we want them to aid human knowledge and help us to further enrich it. Our goal in this workshop is to bring together researchers working on understanding model behavior and show how this key aspect can lead to discovering new human knowledge. The workshop will include theoretical topics on understanding model behavior, namely interpretability and explainability (XAI), but also three distinct scientific application areas: weather and climate, healthcare, and material science (ML4Science).
Schedule
Sat 5:30 p.m. - 5:45 p.m.
|
Opening Remarks
(
Intro
)
>
SlidesLive Video |
🔗 |
Sat 5:45 p.m. - 6:15 p.m.
|
Invited talk by Maximilian Dreyer and Jim Berend
(
Invited Talk
)
>
SlidesLive Video |
Maximilian Dreyer · Jim Berend 🔗 |
Sat 6:15 p.m. - 6:45 p.m.
|
Invited talk by Lily Xu
(
Invited Talk
)
>
SlidesLive Video |
Lily Xu 🔗 |
Sat 6:45 p.m. - 8:15 p.m.
|
Posters Session I & Coffee Break
(
Poster Session
)
>
|
🔗 |
Sat 8:15 p.m. - 8:45 p.m.
|
Invited talk by Erik Cambria
(
Invited Talk
)
>
SlidesLive Video |
Erik Cambria 🔗 |
Sat 8:45 p.m. - 9:15 p.m.
|
Invited talk by Chandan Reddy
(
Invited Talk
)
>
SlidesLive Video |
Chandan Reddy 🔗 |
Sat 9:15 p.m. - 10:30 p.m.
|
Lunch Break
|
🔗 |
Sat 10:30 p.m. - 11:00 p.m.
|
Invited talk by David Rolnick
(
Invited Talk
)
>
SlidesLive Video |
David Rolnick 🔗 |
Sat 11:00 p.m. - 12:30 a.m.
|
Posters Session II & Coffee Break
(
Poster Session
)
>
|
🔗 |
Sun 12:30 a.m. - 1:00 a.m.
|
Invited talk by Bryan Kian Hsiang Low
(
Invited Talk
)
>
SlidesLive Video |
Bryan Kian Hsiang Low 🔗 |
Sun 1:00 a.m. - 1:30 a.m.
|
Invited talk by Qianxiao Li
(
Invited Talk
)
>
SlidesLive Video |
Qianxiao Li 🔗 |
Sun 1:30 a.m. - 2:00 a.m.
|
Invited talk by Grégoire Montavon
(
Invited Talk
)
>
SlidesLive Video |
Grégoire Montavon 🔗 |
Sun 2:00 a.m. - 2:15 a.m.
|
Contributed Talk
(
Contributed Talk
)
>
SlidesLive Video |
🔗 |
Sun 2:15 a.m. - 2:55 a.m.
|
Panel Discussion
(
Panel
)
>
SlidesLive Video |
🔗 |
Sun 2:55 a.m. - 3:00 a.m.
|
Closing Remarks
|
🔗 |
-
|
TIME-AWARE FEATURE SELECTION: ADAPTIVE TEMPORAL MASKING FOR STABLE SPARSE AUTOENCODER TRAINING ( Poster ) > link | T. Ed Li · Junyu Ren 🔗 |
-
|
LEARNING MULTIPHASE AND MULTIPHYSICS SYSTEM WITH DECOUPLED STATE SPACE MODEL ( Poster ) > link | YunYoung Choi · Seunghwan Lee · Minho Lee · Lee JinHaeng · Joohwan Ko · Chanwoong Moon 🔗 |
-
|
Reconstructing Dynamics from Steady Spatial Patterns with Partial Observations ( Poster ) > link | Xinyue Luo · Xuzhe Qian · Yu Chen · Huaxiong Huang · Jin Cheng 🔗 |
-
|
MEASURING LEAKAGE IN CONCEPT-BASED METHODS: AN INFORMATION THEORETIC APPROACH ( Poster ) > link | Mikael Makonnen · Moritz Vandenhirtz · Sonia Laguna · Julia E Vogt 🔗 |
-
|
Causally Reliable Concept Bottleneck Models ( Poster ) > link | Giovanni De Felice · Arianna Casanova · Francesco De Santis · Silvia Santini · Johannes Schneider · Pietro Barbiero · Alberto Termine 🔗 |
-
|
Rethinking Visual Counterfactual Explanations Through Region Constraint ( Poster ) > link | Bartlomiej Sobieski · Jakub Grzywaczewski · Bartłomiej Sadlej · Matthew Tivnan · Przemyslaw Biecek 🔗 |
-
|
Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning ( Poster ) > link | Gabriele Dominici · Pietro Barbiero · Mateo Espinosa Zarlenga · Alberto Termine · Martin Gjoreski · Giuseppe Marra · Marc Langheinrich 🔗 |
-
|
Automated Capability Discovery via Model Self-Exploration ( Poster ) > link | Cong Lu · Shengran Hu · Jeff Clune 🔗 |
-
|
BarkXAI: A Lightweight Post-Hoc Explainable Method for Tree Species Classification with Quantifiable Concepts ( Poster ) > link | Yunmei Huang · Songlin Hou · Zachary Horve · Songlin Fei 🔗 |
-
|
Machine learning-based Optimization for Molten pool Dynamics in Laser Manufacturing ( Poster ) > link | Le Song · Zhiyong Huang · Xuyang Chen 🔗 |
-
|
Graph Discrete Diffusion: a Spectral Study ( Poster ) > link | Olga Zaghen · Manuel Madeira · Laura Toni · Pascal Frossard 🔗 |
-
|
Hybrid Generative Modeling for Incomplete Physics: Deep Grey-Box Meets Optimal Transport ( Poster ) > link | Gurjeet Sangra Singh · Maciej Falkiewicz · Alexandros Kalousis 🔗 |
-
|
LENS: Learning and Evolving Numerical Scores for Cohort-Specific Clinical Insights ( Poster ) > link | Kei Sen Fong · Mehul Motani 🔗 |
-
|
Scaling Sparse Autoencoders for Interpreting Protein Structure Prediction ( Poster ) > link | John J. Yang · David Yang · Nithin Parsan 🔗 |
-
|
Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation ( Poster ) > link | Leander Weber · Jim Berend · Moritz Weckbecker · Alexander Binder · Thomas Wiegand · Wojciech Samek · Sebastian Lapuschkin 🔗 |
-
|
Circuit mechanism for compositional induction in transformer ( Poster ) > link | Cheng Tang · Brenden Lake · Mehrdad Jazayeri 🔗 |
-
|
Emergence of Computational Structure in a Neural Network Physics Simulator ( Poster ) > link | Rohan Hitchcock · Gary Delaney · Jonathan Manton · Richard Scalzo · Jingge Zhu 🔗 |
-
|
Piecewise Polynomial Regression of Tame Functions via Integer Programming ( Poster ) > link | Gilles Bareilles · Johannes Aspman · Jiří Němeček · Jakub Marecek 🔗 |
-
|
Counterfactual Concept Bottleneck Models ( Poster ) > link | Gabriele Dominici · Pietro Barbiero · Francesco Giannini · Martin Gjoreski · Giuseppe Marra · Marc Langheinrich 🔗 |
-
|
Understanding Information Flow in Graph Transformers via Attention Graphs ( Poster ) > link | Batu El · Deepro Choudhury · Pietro Lio · Chaitanya Joshi 🔗 |
-
|
Bayesian Concept Bottleneck Models with LLM Priors ( Poster ) > link | Jean Feng · Avni Kothari · Lucas Zier · Chandan Singh · Yan Shuo Tan 🔗 |
-
|
Generating $\pi$-Functional Molecules Using STGG+ with Active Learning ( Poster ) > link | Alexia Jolicoeur-Martineau · Yan Zhang · Boris Knyazev · Aristide Baratin · Chenghao Liu 🔗 |
-
|
NeuralDEM: Real-time Simulation of Industrial Particulate Flows ( Poster ) > link | Benedikt Alkin · Tobias Kronlachner · Samuele Papa · Stefan Pirker · Thomas Lichtenegger · Johannes Brandstetter 🔗 |
-
|
From Markov to Laplace: How Mamba In-Context Learns Markov Chains ( Poster ) > link | Marco Bondaschi · Nived Rajaraman · Xiuying Wei · Kannan Ramchandran · Razvan Pascanu · Caglar Gulcehre · Michael Gastpar · Ashok Makkuva 🔗 |
-
|
Moment Neural Operator: Interpretable mapping in discontinuous function spaces ( Poster ) > link | Qi Gao · Kuang Huang · Xuan Di 🔗 |
-
|
Why Uncertainty Calibration Matters for Reliable Perturbation-based Explanations ( Poster ) > link | Thomas Decker · Volker Tresp · Florian Buettner 🔗 |
-
|
Post-hoc Interpretability Illumination for Scientific Interaction Discovery ( Poster ) > link | Ling Zhang · Zhichao Hou · Tingxiang Ji · Yuanyuan Xu · Runze Li 🔗 |
-
|
SHAP-BASED A-POSTERIORI INTERPRETABILITY FOR GRAPH NEURAL NETWORKS IN CFD-BASED SUSTAINABLE BUILDING SIMULATIONS ( Poster ) > link | BO SUN · hanmo wang · Tam Nguyen · Alexander Lin 🔗 |
-
|
Timing: Temporality-Aware Integrated Gradients for Time Series Explanation ( Poster ) > link | Hyeongwon Jang · Changhun Kim · Eunho Yang 🔗 |
-
|
$\text{CO}_2$-Net: A Physics-Informed Spatio-Temporal Model for Global $\text{CO}_2$ Reconstruction ( Poster ) > link | Hao Zheng · Yuting Zheng · Hanbo Huang · Chaofan Sun · Lin Liu · Enhui Liao · Yi Han · Hao Zhou · Shiyu Liang 🔗 |
-
|
Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences ( Poster ) > link | Riccardo Cadei · Ilker Demirel · Piersilvio De Bartolomeis · Lukas Lindorfer · Sylvia Cremer · Cordelia Schmid · Francesco Locatello 🔗 |
-
|
SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders ( Poster ) > link | Bartosz Cywiński · Kamil Deja 🔗 |
-
|
Skip the Equations: Learning Behavior of Personalized Dynamical Systems Directly From Data ( Poster ) > link | Krzysztof Kacprzyk · Julianna Piskorz · Mihaela van der Schaar 🔗 |
-
|
Spatially-Informed Sampling Enables Accurate Prediction of Large-Scale Mutational Effects ( Poster ) > link | Maxime Basse · Dianzhuo Wang · Eugene Shakhnovich 🔗 |
-
|
Unveiling the Hidden Structure of Self-Attention via Kernel Principal Component Analysis ( Poster ) > link | Rachel Teo · Tan Nguyen 🔗 |
-
|
AlphaGo or beta-hCG: a reinforcement learning framework for assisted conception ( Poster ) > link | Simon Hanassab · Elizaveta Sheremetyeva · Sonali Parbhoo · Scott Nelson · Waljit S. Dhillo · Thomas Heinis · Ali Abbara 🔗 |
-
|
Modeling Multi-Regional and Non-Stationary Neural Dynamics via Latent Sub-Circuits ( Poster ) > link | Noga Mudrik · Ryan Ly · Oliver Ruebel · Adam Charles 🔗 |
-
|
ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding ( Poster ) > link | Hesam Hosseini · Ghazal Hosseini Mighan · Amirabbas Afzali · Sajjad Amini · Amir Houmansadr 🔗 |
-
|
Limits of Deep Learning: Sequence Modeling through the Lens of Complexity Theory ( Poster ) > link | Nikola Zubic · Federico Soldà · Aurelio Sulser · Davide Scaramuzza 🔗 |
-
|
Massive Activations in Graph Neural Networks: Decoding Attention for Domain-Dependent Interpretability ( Poster ) > link | Lorenzo Bini · Marco Sorbi · Stephane Marchand-Maillet 🔗 |