Workshop
AI4MAT-ICLR-2025: AI for Accelerated Materials Design
Santiago Miret · Marta Skreta · N. M. Anoop Krishnan · Rocío Mercado · Mohamad Moosavi · Stefano Martiniani
We propose a full-day, medium-sized workshop at ICLR 2025 titled “AI for Accelerated Materials Design” (AI4Mat-ICLR-2025). This workshop will serve as a venue for researchers at the intersection of AI and materials science to address pressing scientific challenges using AI-driven techniques. AI is starting to revolutionize materials science and engineering, driving major global research initiatives from academic and government institutions and corporate research labs, alongside the rise of several startups for AI driven materials discovery. AI4Mat's holistic approach to materials design and machine learning ensures comprehensive discussions and foster novel directions across the materials landscape. AI4Mat-ICLR-2025 centers on understanding crucial and timely technical challenges that are unique to AI for materials design: 1. How Do We Build a Foundation Model for Materials Science?: The success of foundation models in various machine learning domains has led to growing relevance and interest in materials foundation models. As such, we propose a discussion that centers on understanding the complex, interdisciplinary nature of foundational models for materials and how the community can contribute towards building them. 2. What are Next-Generation Representations of Materials Data?: Materials representation learning continue to be a rapidly evolving technical challenge with unique considerations informed by real-world materials challenges.AI4Mat-ICLR-2025 also aims to grow and empower a notable community to leverage AI for impactful materials applications. Concretely we plan to build upon past AI4Mat programs: 1. Travel Grant Program: Building upon the success of past AI4Mat programs, we plan to continue a travel grant program funded by AI4Mat corporate sponsors to enable researcher participation with a focus on underrepresented communities. 2: Tiny Papers Track: This track extends our efforts in inclusive research participation based on previous ICLR innovations. 3. Themed Submission Track: We plan to conduct a themed submission track on multi-modal data collection, structured data sharing, and multi-modal representation learning, in order to encourage the community to tackle a common problem of interest. 4. Journal Track: Similar to previous AI4Mat workshops, we aim to provide AI4Mat researchers an opportunity to submit their work to a prestigious venue for their interdisciplinary research.
Schedule
|
Sun 5:30 p.m. - 5:35 p.m.
|
Opening Remarks
(
Opening Remarks
)
>
SlidesLive Video |
Santiago Miret · Marta Skreta · N. M. Anoop Krishnan · Rocío Mercado Oropeza · Mohamad Moosavi · Stefano Martiniani 🔗 |
|
Sun 5:35 p.m. - 5:55 p.m.
|
Beyond the Training Set: Foundation Models & Robust OOD Generalization
(
Invited Talk
)
>
SlidesLive Video |
Natasa Tagasovska 🔗 |
|
Sun 5:55 p.m. - 6:15 p.m.
|
Synthesizability Predictions Beyond Design
(
Invited Talk
)
>
SlidesLive Video |
Yousung Jung 🔗 |
|
Sun 6:15 p.m. - 6:35 p.m.
|
Seeing Without Structure: Multimodal AI for Materials Characterization
(
Invited Talk
)
>
SlidesLive Video |
Weike Ye 🔗 |
|
Sun 6:35 p.m. - 7:00 p.m.
|
Panel - How Do We Build a Foundation Model for Materials Science?
(
Panel Discussion
)
>
SlidesLive Video |
Yousung Jung · Natasa Tagasovska · Weike Ye 🔗 |
|
Sun 7:00 p.m. - 7:30 p.m.
|
Coffee Break
|
🔗 |
|
Sun 7:30 p.m. - 7:50 p.m.
|
Michael Bronstein - What are Next-Generation Representations of Materials Data?
(
Invited Talk
)
>
SlidesLive Video |
Michael Bronstein 🔗 |
|
Sun 7:50 p.m. - 8:00 p.m.
|
Evaluating Universal Interatomic Potentials for Molecular Dynamics of Real-World Minerals
(
Spotlight
)
>
link
SlidesLive Video |
Sajid Mannan · Carmelo Gonzales · Vaibhav Bihani · Kin Long Kelvin Lee · Nitya Gosvami · Santiago Miret · N. M. Anoop Krishnan 🔗 |
|
Sun 8:00 p.m. - 8:10 p.m.
|
DEQuify your force field: More efficient simulations using deep equilibrium models
(
Spotlight
)
>
link
SlidesLive Video |
Andreas Burger · Luca Thiede · Alan Aspuru-Guzik · Nandita Vijaykumar 🔗 |
|
Sun 8:10 p.m. - 8:20 p.m.
|
Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians
(
Spotlight
)
>
link
SlidesLive Video |
Ishan Amin · Sanjeev Raja · Aditi Krishnapriyan 🔗 |
|
Sun 8:20 p.m. - 8:30 p.m.
|
MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials through an Open and Accessible Benchmark Platform
(
Spotlight
)
>
link
SlidesLive Video |
11 presentersYuan Chiang · Tobias Kreiman · Elizabeth Weaver · Ishan Amin · Matthew Kuner · Christine Zhang · Aaron Kaplan · Daryl Chrzan · Samuel Blau · Aditi Krishnapriyan · Mark Asta |
|
Sun 8:30 p.m. - 8:40 p.m.
|
Towards Extrapolation in Deep Material Property Regression
(
Spotlight
)
>
link
SlidesLive Video |
Mianzhi Pan · JianFei Li · Yawen Ouyang · Wei-Ying Ma · Jianbing Zhang · Hao Zhou 🔗 |
|
Sun 8:40 p.m. - 8:50 p.m.
|
MoMa: A Modular Deep Learning Framework for Material Property Prediction
(
Spotlight
)
>
link
SlidesLive Video |
Botian Wang · Yawen Ouyang · Yaohui Li · Yiqun Wang · Haorui Cui · Jianbing Zhang · Xiaonan Wang · Wei-Ying Ma · Hao Zhou 🔗 |
|
Sun 8:50 p.m. - 9:00 p.m.
|
Does this smell the same? Learning representations of olfactory mixtures using inductive biases
(
Spotlight
)
>
link
SlidesLive Video |
Gary Tom · Cher-Tian Ser · Ella Rajaonson · Stanley Lo · Hyun Park · Brian Lee · Benjamin M Sanchez 🔗 |
|
Sun 9:00 p.m. - 10:30 p.m.
|
Lunch & Poster Session
(
Poster Session
)
>
|
🔗 |
|
Sun 10:30 p.m. - 10:50 p.m.
|
Exploring Material Generation with Transformers
(
Invited Talk
)
>
SlidesLive Video |
Xavier Bresson 🔗 |
|
Sun 10:50 p.m. - 11:10 p.m.
|
Topological Deep Learning: Frontiers in Representation Learning
(
Invited Talk
)
>
SlidesLive Video |
Mustafa Hajij 🔗 |
|
Sun 11:10 p.m. - 11:30 p.m.
|
Unifying Materials Representations through Foundation Models: The FM4M Approach
(
Invited Talk
)
>
SlidesLive Video |
Indra Priyadarsini S 🔗 |
|
Sun 11:30 p.m. - 11:50 p.m.
|
Panel - What are Next-Generation Representations of Materials Data?
(
Panel Discussion
)
>
SlidesLive Video |
Xavier Bresson · Mustafa Hajij · Indra Priyadarsini S 🔗 |
|
Sun 11:50 p.m. - 12:30 a.m.
|
Coffee Break
|
🔗 |
|
Mon 12:30 a.m. - 12:40 a.m.
|
All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
(
Spotlight
)
>
link
SlidesLive Video |
Chaitanya Joshi · Xiang Fu · Yi-Lun Liao · Vahe Gharakhanyan · Benjamin Kurt Miller · Anuroop Sriram · Zachary Ulissi 🔗 |
|
Mon 12:40 a.m. - 12:50 a.m.
|
CrystalGym: A New Benchmark for Materials Discovery Using Reinforcement Learning
(
Spotlight
)
>
link
SlidesLive Video |
Prashant Govindarajan · Mathieu Reymond · Antoine Clavaud · Mariano Phielipp · Santiago Miret · Sarath Chandar 🔗 |
|
Mon 12:50 a.m. - 1:00 a.m.
|
Compositional Flows for 3D Molecule and Synthesis Pathway Co-design
(
Spotlight
)
>
link
SlidesLive Video |
Tony Shen · Seonghwan Seo · Ross Irwin · Kieran Didi · Simon Olsson · Woo Youn Kim · Martin Ester 🔗 |
|
Mon 1:00 a.m. - 1:10 a.m.
|
MatBind: Probing the multimodality of materials science with contrastive learning
(
Spotlight
)
>
link
SlidesLive Video |
Adrian Mirza · Le Yang · Anoop Chandran · Jona Östreicher · Sebastien Bompas · Bashir Kazimi · Stefan Kesselheim · Pascal Friederich · Stefan Sandfeld · Kevin Maik Jablonka 🔗 |
|
Mon 1:10 a.m. - 1:20 a.m.
|
PLaID: Preference Aligned Language Model for Targeted Inorganic Materials Design
(
Spotlight
)
>
link
SlidesLive Video |
Andy Xu · Rohan Desai · Larry Wang · Gabriel Hope · Ethan Ritz 🔗 |
|
Mon 1:20 a.m. - 1:30 a.m.
|
Open Materials Generation with Stochastic Interpolants
(
Spotlight
)
>
link
SlidesLive Video |
14 presentersPhilipp Höllmer · Thomas Egg · Maya Martirossyan · Eric Fuemmeler · Amit Gupta · Zeren Shui · Pawan Prakash · Adrian Roitberg · Mingjie Liu · George Karypis · Mark Transtrum · Richard Hennig · Ellad Tadmor · Stefano Martiniani |
|
Mon 1:30 a.m. - 1:40 a.m.
|
OPERATING ROBOTIC LABORATORIES WITH LARGE LANGUAGE MODELS AND TEACHABLE AGENTS
(
Spotlight
)
>
link
SlidesLive Video |
Aikaterini Vriza · Michael Prince · Henry Chan · Tao Zhou · Mathew Cherukara 🔗 |
|
Mon 1:40 a.m. - 2:00 a.m.
|
Closing Remarks
(
Closing Remarks
)
>
SlidesLive Video |
Santiago Miret · Marta Skreta · N. M. Anoop Krishnan · Rocío Mercado Oropeza · Mohamad Moosavi · Stefano Martiniani 🔗 |
|
-
|
MLIP Arena: Advancing Fairness and Transparency in Machine Learning Interatomic Potentials through an Open and Accessible Benchmark Platform ( Poster ) > link |
11 presentersYuan Chiang · Tobias Kreiman · Elizabeth Weaver · Ishan Amin · Matthew Kuner · Christine Zhang · Aaron Kaplan · Daryl Chrzan · Samuel Blau · Aditi Krishnapriyan · Mark Asta |
|
-
|
Detecting Symmetry-Breaking in Molecular Data Distributions ( Poster ) > link | Hannah Lawrence · Elyssa Hofgard · Yuxuan Chen · Tess Smidt · Robin Walters 🔗 |
|
-
|
In-Context Fine-Tuning for Neural Operators ( Poster ) > link | Yash Patel · Abhiti Mishra · Ambuj Tewari 🔗 |
|
-
|
Dynamic Fusion for a Multimodal Foundation Model for Materials ( Poster ) > link | Indra Priyadarsini S · Seiji Takeda · Lisa Hamada 🔗 |
|
-
|
Capturing Global Features of Crystals from Their Bond Networks ( Poster ) > link | Qianxiang Ai · Sartaaj Khan · Senja Barthel · Mohamad Moosavi 🔗 |
|
-
|
LeMat-Bulk: aggregating, and de-duplicating quantum chemistry materials databases ( Poster ) > link | Martin Siron · Inel DJAFAR · Etienne du Fayet · Amandine Rossello · Ali Ramlaoui · Alexandre Duval 🔗 |
|
-
|
Transformer as a Neural Knowledge Graph ( Poster ) > link | Yuki Nishihori · Yusei Ito · Yuta Suzuki · Ryo Igarashi · Yoshitaka Ushiku · Kanta Ono 🔗 |
|
-
|
NeuralDEM: Real-time Simulation of Industrial Particulate Flows ( Poster ) > link | Benedikt Alkin · Tobias Kronlachner · Samuele Papa · Stefan Pirker · Thomas Lichtenegger · Johannes Brandstetter 🔗 |
|
-
|
Benchmarking Band Gap Prediction for Semiconductor Materials using Multimodal and Multi-Fidelity Data ( Poster ) > link | Haolin Wang · Xianyuan Liu · Anna Jungbluth · Alex Ramadan · Robert D. J, Oliver · Haiping Lu 🔗 |
|
-
|
Active and transfer learning with partially Bayesian neural networks for materials and chemicals ( Poster ) > link | Sarah Allec · Maxim Ziatdinov 🔗 |
|
-
|
MATMMFUSE: MULTI-MODAL FUSION MODEL FOR MATERIAL PROPERTY PREDICTION ( Poster ) > link | Abhiroop Bhattacharya · Sylvain Cloutier 🔗 |
|
-
|
LLM-Augmented Chemical Synthesis and Design Decision Programs ( Poster ) > link | Haorui Wang · Jeff Guo · Lingkai Kong · Rampi Ramprasad · Philippe Schwaller · Yuanqi Du · Chao Zhang 🔗 |
|
-
|
MatFusion: A Multi-Modal Framework Bridging LLMs and Structural Embeddings for Experimental Materials Property Prediction ( Poster ) > link | Yuwei Wan · Yuqi An · Dongzhan Zhou · Jiahao Dong · Chunyu Kit · Wenjie Zhang · Bram Hoex · Tong Xie · Yingheng Wang 🔗 |
|
-
|
Tango*: Constrained synthesis planning using chemically informed value functions ( Poster ) > link | Daniel Armstrong · Zlatko Jončev · Jeff Guo · Philippe Schwaller 🔗 |
|
-
|
CrysLDM: Latent Diffusion Model for Crystal Material Generation ( Poster ) > link | Subhojyoti Khastagir · KISHALAY DAS · Pawan Goyal · Seung-Cheol Lee · Satadeep Bhattacharjee · Niloy Ganguly 🔗 |
|
-
|
Evaluating Universal Interatomic Potentials for Molecular Dynamics of Real-World Minerals ( Poster ) > link | Sajid Mannan · Carmelo Gonzales · Vaibhav Bihani · Kin Long Kelvin Lee · Nitya Gosvami · Santiago Miret · N. M. Anoop Krishnan 🔗 |
|
-
|
All-atom Diffusion Transformers ( Poster ) > link | Chaitanya Joshi · Xiang Fu · Yi-Lun Liao · Vahe Gharakhanyan · Benjamin Kurt Miller · Anuroop Sriram · Zachary Ulissi 🔗 |
|
-
|
PriM: Principle-Inspired Material Discovery through Multi-Agent Collaboration ( Poster ) > link | Zheyuan Lai · Yingming Pu 🔗 |
|
-
|
ELECTRA: A Symmetry-breaking Cartesian Network for Charge Density Prediction with Floating Orbitals ( Poster ) > link | Jonas Elsborg · Luca Thiede · Alan Aspuru-Guzik · Tejs Vegge · Arghya Bhowmik 🔗 |
|
-
|
Revealing chemical reasoning in LLMs through search on complex planning tasks ( Poster ) > link | Andres M Bran · Théo Neukomm · Daniel Armstrong · Zlatko Jončev · Philippe Schwaller 🔗 |
|
-
|
Open Materials Generation with Stochastic Interpolants ( Poster ) > link |
14 presentersPhilipp Höllmer · Thomas Egg · Maya Martirossyan · Eric Fuemmeler · Amit Gupta · Zeren Shui · Pawan Prakash · Adrian Roitberg · Mingjie Liu · George Karypis · Mark Transtrum · Richard Hennig · Ellad Tadmor · Stefano Martiniani |
|
-
|
Compositional Flows for 3D Molecule and Synthesis Pathway Co-design ( Poster ) > link | Tony Shen · Seonghwan Seo · Ross Irwin · Kieran Didi · Simon Olsson · Woo Youn Kim · Martin Ester 🔗 |
|
-
|
OPERATING ROBOTIC LABORATORIES WITH LARGE LANGUAGE MODELS AND TEACHABLE AGENTS ( Poster ) > link | Aikaterini Vriza · Michael Prince · Henry Chan · Tao Zhou · Mathew Cherukara 🔗 |
|
-
|
Accelerating High-Efficiency Organic Photovoltaic Discovery via Pretrained Graph Neural Networks and Generative Reinforcement Learning ( Poster ) > link | Jiangjie Qiu · Hou Hei Lam · Xiuyuan Hu · Wentao Li · Siwei Fu · Fankun Zeng · Hao Zhang · Xiaonan Wang 🔗 |
|
-
|
MatDock: Multi-molecule docking in porous materials with flow matching ( Poster ) > link | Malte Franke · Mingrou Xie · Akshay Subramanian · Juno Nam · Rafael Gomez-Bombarelli 🔗 |
|
-
|
Automated Data Extraction from Solar Cell Literature Using Large Language Models ( Poster ) > link | Sherjeel Shabih · Christoph Koch · Kevin Maik Jablonka · José Márquez 🔗 |
|
-
|
3D Microstructure Reconstruction of Aerogels via Conditional GANs ( Poster ) > link | Prakul Pandit · Sugan Kanagasenthinathan · Ameya Rege 🔗 |
|
-
|
Accelerated Gradient-Based Design Optimization via Differentiable Physics Informed Neural Operator for Composite Materials Processing ( Poster ) > link | Janak Maheshbhai Patel · Milad Ramezankhani · Anirudh Deodhar · Dagnachew Birru 🔗 |
|
-
|
Flow-Based Fragment Identification via Contrastive Learning of Binding Site-Specific Latent Representations ( Poster ) > link | Rebecca M Neeser · Ilia Igashov · Arne Schneuing · Michael Bronstein · Philippe Schwaller · Bruno Correia 🔗 |
|
-
|
TDCM25: A Multi-Modal Multi-Task Benchmark for Temperature-Dependent Crystalline Materials ( Poster ) > link | Can Polat · HASAN KURBAN · Erchin Serpedin · Kurban 🔗 |
|
-
|
MatBind: Probing the multimodality of materials science with contrastive learning ( Poster ) > link | Adrian Mirza · Le Yang · Anoop Chandran · Jona Östreicher · Sebastien Bompas · Bashir Kazimi · Stefan Kesselheim · Pascal Friederich · Stefan Sandfeld · Kevin Maik Jablonka 🔗 |
|
-
|
It Takes Two to Tango: Directly Optimizing for Constrained Synthesizability in Generative Molecular Design ( Poster ) > link | Jeff Guo · Philippe Schwaller 🔗 |
|
-
|
DEQuify your force field: More efficient simulations using deep equilibrium models ( Poster ) > link | Andreas Burger · Luca Thiede · Alan Aspuru-Guzik · Nandita Vijaykumar 🔗 |
|
-
|
Evaluating Machine Learning Potentials on Bulk Structures with Neutral Substitutional Defects ( Poster ) > link | Xiaoxiao Wang · Suehyun Park · Kin Long Kelvin Lee · Rachel Kurchin · Santiago Miret 🔗 |
|
-
|
Does this smell the same? Learning representations of olfactory mixtures using inductive biases ( Poster ) > link | Gary Tom · Cher-Tian Ser · Ella Rajaonson · Stanley Lo · Hyun Park · Brian Lee · Benjamin M Sanchez 🔗 |
|
-
|
CrystalGym: A New Benchmark for Materials Discovery Using Reinforcement Learning ( Poster ) > link | Prashant Govindarajan · Mathieu Reymond · Antoine Clavaud · Mariano Phielipp · Santiago Miret · Sarath Chandar 🔗 |
|
-
|
MoMa: A Modular Deep Learning Framework for Material Property Prediction ( Poster ) > link | Botian Wang · Yawen Ouyang · Yaohui Li · Yiqun Wang · Haorui Cui · Jianbing Zhang · Xiaonan Wang · Wei-Ying Ma · Hao Zhou 🔗 |
|
-
|
Dis-CSP: Disordered crystal structure predictions ( Poster ) > link | Martin Petersen · Ruiming Zhu · Haiwen Dai · Savyasanchi Aggarwal · Wei Nong · Andy Chen · Arghya Bhowmik · Juan Garcia-Lastra · Kedar Hippalgaonkar 🔗 |
|
-
|
Data Curation for Machine Learning Interatomic Potentials by Determinantal Point Processes ( Poster ) > link | Joanna Zou · Youssef Marzouk 🔗 |
|
-
|
AQForge: Bridging Generative Models and Property Prediction for Materials Discovery ( Poster ) > link | Shivang Agarwal · Rodrigo Wang 🔗 |
|
-
|
MatInvent: Reinforcement Learning for 3D Crystal Diffusion Generation ( Poster ) > link | Junwu Chen · Jeff Guo · Philippe Schwaller 🔗 |
|
-
|
Kinetic Langevin Diffusion for Crystalline Materials Generation ( Poster ) > link | François Cornet · Federico Bergamin · Arghya Bhowmik · Juan Garcia-Lastra · Jes Frellsen · Mikkel N. Schmidt 🔗 |
|
-
|
LLM-as-Judge Meets LLM-as-Optimizer: Enhancing Organic Data Extraction Evaluations Through Dual LLM Approaches ( Poster ) > link | Martiño Ríos-García · Kevin Maik Jablonka 🔗 |
|
-
|
Towards Fast, Specialized Machine Learning Force Fields: Distilling Foundation Models via Energy Hessians ( Poster ) > link | Ishan Amin · Sanjeev Raja · Aditi Krishnapriyan 🔗 |
|
-
|
Feature Informed Batch Selection may Accelerate Training and Tuning of Chemical Foundation Models ( Poster ) > link | Benjamin du Pont · Omar Allam · Aayush Singh · Ang Xiao 🔗 |
|
-
|
What Actually Matters for Materials Discovery: Pitfalls and Recommendations in Bayesian Optimization ( Poster ) > link | Tristan Cinquin · Stanley Lo · Felix Strieth-Kalthoff · Alan Aspuru-Guzik · Geoff Pleiss · Robert Bamler · Tim G. J. Rudner · Vincent Fortuin · Agustinus Kristiadi 🔗 |
|
-
|
Retro-Rank-In: A Ranking-Based Approach for Inorganic Materials Synthesis Planning ( Poster ) > link |
11 presentersThorben Prein · Elton Pan · Sami Haddouti · Marco Lorenz · Janik Jehkul · Tymoteusz Wilk · Cansu Moran · Menelaos Fotiadis · Artur Toshev · Elsa Olivetti · Jennifer Rupp |
|
-
|
Towards Extrapolation in Deep Material Property Regression ( Poster ) > link | Mianzhi Pan · JianFei Li · Yawen Ouyang · Wei-Ying Ma · Jianbing Zhang · Hao Zhou 🔗 |
|
-
|
A physics-based data-driven model for CO$_2$ gas diffusion electrodes to drive automated laboratories ( Poster ) > link | Ivan Grega · Félix Therrien · Abhishek Kumar Soni · Karry Ocean · Kevan Dettelbach · Ribwar Ahmadi · Mehrdad Mokhtari · Curtis Berlinguette · Yoshua Bengio 🔗 |
|
-
|
Semantic Device Graphs for Perovskite Solar Cell Design ( Poster ) > link | Anagha Aneesh · Nawaf Alampara · José Márquez · Kevin Maik Jablonka 🔗 |
|
-
|
Large Language Models Are Innate Crystal Structure Generators ( Poster ) > link | Jingru Gan · Peichen Zhong · Yuanqi Du · Yanqiao Zhu · Chenru Duan · Haorui Wang · Daniel Schwalbe-Koda · Carla Gomes · Kristin Persson · Wei Wang 🔗 |
|
-
|
Towards Faster and More Compact Foundation Models for Molecular Property Prediction ( Poster ) > link | Yasir Ghunaim · Andrés Villa · Gergo Ignacz · Gyorgy Szekely · Motasem Alfarra · Bernard Ghanem 🔗 |
|
-
|
PLaID: Preference Aligned Language Model for Targeted Inorganic Materials Design ( Poster ) > link | Andy Xu · Rohan Desai · Larry Wang · Gabriel Hope · Ethan Ritz 🔗 |
|
-
|
LLaMP: Large Language Model Made Powerful for High-fidelity Materials Knowledge Retrieval ( Poster ) > link | Yuan Chiang · Elvis Hsieh · Chia-Hong Chou · Janosh Riebesell 🔗 |
|
-
|
DIRECT PREDICTION OF TENSORIAL PROPERTIES WITH EQUIVARIANT MESSAGE-PASSING: APPLICATIONS TO NONLINEAR OPTICS ( Poster ) > link | Peter Miedaner · Kin Long Kelvin Lee · Shiang Fang · Tess Smidt · Keith Nelson 🔗 |
|
-
|
Reliability of Deep Learning Models for Scanning Electron Microscopy Analysis ( Poster ) > link | Chuen-Wun Pai · HUNG-WEI HSUEH · Shu-han Hsu 🔗 |
|
-
|
Crystal Generative Modeling with Explicit Autoregressive Conditional Likelihoods and Nontrivial Space Group Stabilizers ( Poster ) > link | Rees Chang · Alex Guerra · Nick Richardson · Ni Zhan · Sulin Liu · Angela Pak · Ryan Marr · Alex Ganose · Ryan P Adams · Elif Ertekin 🔗 |
|
-
|
Benchmarking Text Representations for Crystal Structure Generation with Large Language Models ( Poster ) > link | Shuyi Jia · Aamod Varma · Pranav Manivannan · Dhruva Chayapathy · Victor Fung 🔗 |
|
-
|
Lifting the benchmark iceberg with item-response theory ( Poster ) > link | Mara Schilling-Wilhelmi · Nawaf Alampara · Kevin Maik Jablonka 🔗 |
|
-
|
Accelerated Photocatalytic C–C Coupling via Interpretable Deep Learning: Single-Crystal Perovskite Catalyst Design using First-Principles Calculations ( Poster ) > link | Yuze Hao 🔗 |
|
-
|
MatWheel: Addressing Data Scarcity in Materials Science Through Synthetic Data ( Poster ) > link | Wentao Li · 陈奕哲 · Jiangjie Qiu · Xiaonan Wang 🔗 |
|
-
|
SMI-TED: A large-scale foundation model for materials and chemistry ( Poster ) > link | Emilio Vital Brazil · Eduardo Soares · Victor Shirasuna · Renato Cerqueira · Dmitry Zubarev · Kristin Schmidt 🔗 |
|
-
|
Representing surfactants by foundation models ( Poster ) > link | Eduardo Soares · Zeynep Sumer · Emilio Vital Brazil · Dave Braines · Richard Anderson 🔗 |
|
-
|
A Foundation Model for Simulation-Grade Molecular Electron Densities ( Poster ) > link | Eduardo Soares · Dmitry Zubarev · Victor Shirasuna · Emilio Vital Brazil · Breno Carvalho · Brandi Ransom · Holt Bui · Krystelle Lionti · Caio Gama · Daniel de Briquez 🔗 |
|
-
|
nanoMINER: Multimodal Information Extraction for Nanomaterials ( Poster ) > link | Roman Odobesku · Karina Romanova · Sabina Mirzaeva · Oleg Zagorulko · Roman Sim · Rustem Khakimullin · Julia Razlivina · Andrei Dmitrenko · Vladimir Vinogradov 🔗 |
|
-
|
MatAgent: A human-in-the-loop multi-agent LLM framework for accelerating the material science discovery cycle ( Poster ) > link | Adib Bazgir · Rama Madugula · Yuwen Zhang 🔗 |