Skip to yearly menu bar Skip to main content


Poster

Overcoming Catastrophic Interference using Conceptor-Aided Backpropagation

Xu He · Herbert Jaeger

East Meeting level; 1,2,3 #25

Abstract:

Catastrophic interference has been a major roadblock in the research of continual learning. Here we propose a variant of the back-propagation algorithm, "Conceptor-Aided Backprop" (CAB), in which gradients are shielded by conceptors against degradation of previously learned tasks. Conceptors have their origin in reservoir computing, where they have been previously shown to overcome catastrophic forgetting. CAB extends these results to deep feedforward networks. On the disjoint and permuted MNIST tasks, CAB outperforms two other methods for coping with catastrophic interference that have recently been proposed.

Live content is unavailable. Log in and register to view live content