Skip to yearly menu bar Skip to main content


Poster

The High-Dimensional Geometry of Binary Neural Networks

Alexander Anderson · Cory P Berg

East Meeting level; 1,2,3 #13

Abstract:

Recent research has shown that one can train a neural network with binary weights and activations at train time by augmenting the weights with a high-precision continuous latent variable that accumulates small changes from stochastic gradient descent. However, there is a dearth of work to explain why one can effectively capture the features in data with binary weights and activations. Our main result is that the neural networks with binary weights and activations trained using the method of Courbariaux, Hubara et al. (2016) work because of the high-dimensional geometry of binary vectors. In particular, the ideal continuous vectors that extract out features in the intermediate representations of these BNNs are well-approximated by binary vectors in the sense that dot products are approximately preserved. Compared to previous research that demonstrated good classification performance with BNNs, our work explains why these BNNs work in terms of HD geometry. Furthermore, the results and analysis used on BNNs are shown to generalize to neural networks with ternary weights and activations. Our theory serves as a foundation for understanding not only BNNs but a variety of methods that seek to compress traditional neural networks. Furthermore, a better understanding of multilayer binary neural networks serves as a starting point for generalizing BNNs to other neural network architectures such as recurrent neural networks.

Live content is unavailable. Log in and register to view live content