Skip to yearly menu bar Skip to main content


Poster

Learning how to explain neural networks: PatternNet and PatternAttribution

Pieter-Jan Kindermans · Kristof T Schütt · Maximilian Alber · Klaus R Muller · Dumitru Erhan · Been Kim · Sven Dähne

East Meeting level; 1,2,3 #33

Abstract:

DeConvNet, Guided BackProp, LRP, were invented to better understand deep neural networks. We show that these methods do not produce the theoretically correct explanation for a linear model. Yet they are used on multi-layer networks with millions of parameters. This is a cause for concern since linear models are simple neural networks. We argue that explanation methods for neural nets should work reliably in the limit of simplicity, the linear models. Based on our analysis of linear models we propose a generalization that yields two explanation techniques (PatternNet and PatternAttribution) that are theoretically sound for linear models and produce improved explanations for deep networks.

Live content is unavailable. Log in and register to view live content